
6.190 Quiz Review Session
Practice quiz from Fall 2022 (First Quarter)

Problem 1
Binary Arithmetic

A. What is 0x68 ^ (0x9C | 0x5A)? Provide your result in both unsigned
8-bit binary and unsigned 8-bit hexadecimal.

● 0x9C = 0b1001_1100
● 0x5A = 0b0101_1010
● (0x9C | 0x5A) = 0b1101_1110 = 0xDE

● 0xDE = 0b1101_1110
● 0x68 = 0b0110_1000
● 0x68 ^ 0xDE = 0b1011_0110 = 0xB6

OR

a b out

0 0 0

0 1 1

1 0 1

1 1 1

XOR

a b out

0 0 0

0 1 1

1 0 1

1 1 0

B. What is the result of ((0b001 > 0b101) && 0b100) == 0b001)? Assume
all numbers are unsigned. Provide your result in decimal.

● 0b001 = 1
● 0b100 = 4
● 0b101 = 5
● 1 > 5 is False (0)
● (0 && 4) = 0
● (0 == 1) = 0

C. (4 points): What are 14 and 31 in 8-bit 2’s complement notation? What
is –31 in 8-bit 2’s complement notation? Show how to compute 14–31
using 2’s complement addition. What is the result in 8-bit 2’s complement
notation?

● 14 = 0b0000_1110
● 31 = 0b0001_1111
● -31 = 0b1110_0001

● 0b0000_1110
● 0b1110_0001
● 0b1110_1111 = -(0b0001_0001) = -17

D. How many bits are required to encode decimal values ranging from -
128 to 127 in two’s complement representation? How many bits are
required to encode decimal values ranging from 0 to 127 in unsigned
binary representation? Provide your answer in decimal.

● Two’s complement range: [-2n-1, 2n-1-1]
● Unsigned range: [0, 2n-1]
● Where n is the number of bits

Two’s complement

● 127 = 2n-1-1
● 128 = 2n-1

● log2128 = n-1
● 7 = n-1
● 8 = n

Unsigned

● 127 = 2n-1
● 128 = 2n

● log2128 = n
● 7 = n

E. (2 points) What is the result of the logical right shift 0b11011010 >> 2 in
2's complement notation? What is the result of the arithmetic right shift
0b11011010 >> 2 in 2's complement notation? Provide your answer in
binary

● Logical: shift in zeros
● Arithmetic: shift in value of MSB

○ To preserve the sign of the value

● Logical: 0b1101_1010 >> 2 = 0b0011_0110
● Arithmetic: 0b1101_1010 >> 2 = 0b1111_0110

G. What is the decimal equivalent of the 32-bit floating point number
0x41080000? The format of 32-bit floating point encoding is shown below.
Show your work

G. What is the decimal equivalent of the 32-bit floating point number
0x41080000? The format of 32-bit floating point encoding is shown below.
Show your work

0x41080000 = 0100_0001_0000_1000_0000_0000_0000_0000

(-1)0 * 2130 - 127 * (1 + 2-4) = 23 * 1.0625 = 8.5

Problem 2
What If

A. Which candidates are equivalent to x++; in the above program?

&x = &x + 1;

A. Which candidates are equivalent to x++; in the above program?

&x = &x + 1;

Address of X = Address of X + 1

Doesn’t work!
X is a pointer! Incrementing the

address of the pointer is not the same
thing as incrementing the pointer!

Address of x

Address of x

Increment by 1

A. Which candidates are equivalent to x++; in the above program?

*(&x) = x + 1;

A. Which candidates are equivalent to x++; in the above program?

*(&x) = x + 1;

*(&x) = x

Works just fine!
Obtaining the address of x, and then
dereferencing that is just the same

thing as writing down x.

increment x by one

same thing as x

A. Which candidates are equivalent to x++; in the above program?

x = (char *)((uint32_t)x + 4);

A. Which candidates are equivalent to x++; in the above program?

Cast address into 32-bit number Doesn’t work!
The idea was good but the execution
wasn’t. Chars are 1 byte wide, so we

should have added 1 instead of 4.

x = (char *)((uint32_t)x + 4);
Add 4 bytes to itCast back into a char pointer

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

Things to note:
● Argument to function f() is a reference to x,

since we pass in &x (the address of x).
● X is a char pointer (char *).

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

Make the argument type a reference
to a char*!

A pointer to a char pointer!

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

Make the argument type a reference
to a char*!

A pointer to a char pointer!

Increment x, not the pointer to x!
Dereference x before incrementing, but

be careful of operator precedence.
(++ occurs before *).

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

Make the argument type a reference
to a char*!

A pointer to a char pointer!

Increment x, not the pointer to x!
Dereference x before incrementing, but

be careful of operator precedence.
(++ occurs before *).

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

// char * that points to str

// char ** that points to p

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Passing p should just flip the case of "ababABAB".

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Passing str+2 should just flip the case of the last 6 chars of str.
Offsetting by 2 skips the first 2 chars.

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Passing (*q) + 8 should avoid flipping anything. We’ve skipped all 8 chars.
(*q) is the same as str, and offsetting by 8 moves the str up to the null char.

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ??? with that expression. If the code would not compile, write
“WON’T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

*(&p) is just p again. &(p)[4] offsets p by four, and subtracting one brings the
offset to 3. This skips the first three characters when flipping.

Problem 3
C structs

Problem 4
An Average Filter

Fill in the blanks.

Fill in the blanks.

find_mean() averages n elements in an float array arr and returns the mean in
float pointer mean.

Fill in the blanks.

Fill in the blanks.

As we iterate over the elements in the float array input, we need to offset the
array being passed into find_mean().

Fill in the blanks.

We only want to calculate the mean over window_size arguments!

Fill in the blanks.

There are multiple ways of passing along a reference to the float buffer that
will contain the result of our averaging.

Fill in the blanks.

Multiple ways of updating the array! We just want to store the value of buffer
in the output array. Directly storing buffer or dereferencing ptr work.

Problem 5
Assembly Language

A. What is hexadecimal encoding of the instruction srai t3, a2, 6?
You can use the template below to help you with the encoding.

A. What is hexadecimal encoding of the instruction srai t3, a2, 6?
You can use the template below to help you with the encoding.

● shamt = 6 = 0b00110
● rs1 = a2 = x12 = 12 = 0b01100
● rd = t3 = x28 = 28 = 0b11100
● funct3 = 0b101
● Opcode = 0b0010011
● 0100000_00110_01100_101_11100_0010011
● 0x40665E13

B. provide the hexadecimal values of the specified registers after each
sequence has been executed. Assume that each sequence execution
ends when it reaches the end label

B. provide the hexadecimal values of the specified registers after each
sequence has been executed. Assume that each sequence execution
ends when it reaches the end label

● x11 = 0x600
● x11 = 0xC0C0A0A0
● x11 MSB is 1, so negative

○ We don’t branch
● x12 = 0xC0C0A0A0 ^ 0xA55
● Don’t forget to sign extend
● 0xC0C0A0A0
● 0xFFFFFA55
● 0x3F3f5af5

The first instruction executed is located at address 0x100

● Starting at 0x100, x11 becomes 0x3000 since
lui shifts the immediate by 12 and then sets the
register to that result

● x12 = 0x22224444 since lw x12, 0x4(x11)
loads the value at address 0x3004

● jal x1, f unconditionally jumps to the f label
and executes the code there
○ x1 gets set to the address of the jal

instruction + 4 = 0x10C
■ Every instruction is 4 bytes

○ x1 is the ra register
● x13 = 0x22444400
● ret makes the program jump back to the address

stored in ra which is also x1
● x14 = 0xC2 | 0x10C = 0x1CE

Problem 6
Calling Convention

● Since we are calling another procedure, we must store ra before
the first call instruction and load it back before we ret

○ Only need to store ra once, no matter how many
procedures are called

○ The caller needs the original ra value so ret can return to
the correct address

● s registers are callee saved. We must store their values before
we, as the callee, use them. We then load their original values
right before we ret.

○ This is why s register values persist between procedure
calls

● a registers are caller saved. If we call other procedures and these
registers have values we want to use after, we must store them to
then load back after.
○ a and t registers are not guaranteed to stay the same

between calls
○ We load them back every time we need that stored value

Calling convention refresher

● Allocate enough space on the stack
● Store ra because we call other

procedures
● Store a3 because we use its value

here also after a call setPixel
● Store s0 because we will be using it

(overwriting it with our own value)
● Store a2 since we care about its

value after we set it with slli and
add

○ And we need it for our branch
condition after a potential call
setPixel from looping

● We store a1 because we will be
using this same value to branch

● Load a1 and a2 since their values
could have changed with call
setPixel

○ And we use them for our
branch instruction

● We load a3 since we want to use its
original value

● At the end, we load back s0 and ra
to get their original values
○ ra is used to return to the

proper address after the
procedure is done

○ s0 needs to keep its original
value after we use it

● Don’t forget to increment sp since
we are no longer use that stack
space

● a1, a2, and a3 are never
guaranteed to be the values they
started as, so we don’t need to load
them

Problem 7
Stack Detective

A. What line of assembly should be substituted into the blank line in the
arrayProd procedure above?

● mv t0, a0
● Our answer from the mult procedure call is in a0.
● t0 is not guaranteed to be known after the call
● Before we ret, we move t0 into a0

○ So we must ensure t0 is also the value we are returning

B. A user creates an array and passes it and its length into arrayProd.
Immediately prior to and immediately after the procedure call, a sample of
the ra, sp, a0, and a1 is collected as well as a region of the stack.

B1) What is the hexadecimal address of the instruction that originally calls
arrayProd?

● Look at first snapshot after initial
call

● ra is 0x00000204
● ra stores the address of the

instruction after the procedure call
○ Which is 4 bytes after

● Therefore, the address of the
original call is ra - 4

○ 0x00000200

B2) What is the hexadecimal address of the instruction that is responsible
for the recursive calls to arrayProd?

● Look at ra in the following
snapshots

● It is repeatedly 0x0000025C
● The recursive call will be ra - 4

○ 0x00000258

B3) What is the hexadecimal address of the array a provided to the initial
call of arrayProd?

● Look at arguments that
arrayProd takes in

○ uint32_t* a in a0
○ uint32_t b in a1

● a is the pointer of the array
provided to arrayProd

○ A pointer is a variable that stores the
address of something in memory

● Snapshot 1 shows us the value of
a0 right before we first call
arrayProd

B4) Specify a C array below that is identical to the one the user must have
handed into arrayProd.

● Let’s look at the last snapshot for
values added in the stack

○ { 1, 3, 5, 8 } coupled with ra’s
● Notice that the value in a0 is the

result of multiplying each element
in the array

● From the first snapshot, a1 was 5
○ a1 corresponds to the length of the

array
● 0x0F0 = 240 = 1*3*5*8*???

○ ??? = 2

● The array is { 1, 3, 5, 8, 2 }

