
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.S077(6.1900)(6.0004): Introduction to Low-level Programming in C and
Assembly

Fall 2022, Quarter 1

Name: Kerberos:

MIT ID #:

#1 (16) #2 (18) #3 (13) #4 (9) #5 (16) #6 (14) #7 (14) Total

Enter your answers in the spaces designated in each problem. Show your work for potential partial credit.
You can use the extra white space and the backs of the pages for scratch work.

6.190 Fall 2022 - 1 of 19 - Exam

Problem 1. Binary Arithmetic (16 points)

A. (4 points): What is 0x68 ^ (0x9C | 0x5A)? Provide your result in both unsigned 8-bit binary and
unsigned 8-bit hexadecimal.

Result in unsigned 8-bit binary (0b):

Result in unsigned 8-bit hexadecimal (0x):

B. (2 points): What is the result of ((0b001 > 0b101) && 0b100) == 0b001)? Assume all
numbers are unsigned. Provide your result in decimal.

Result in Decimal:

C. (4 points): What are 14 and 31 in 8-bit 2’s complement notation? What is –31 in 8-bit 2’s
complement notation? Show how to compute 14–31 using 2’s complement addition. What is the result
in 8-bit 2’s complement notation?

14 in 8-bit 2’s complement notation (0b):

31 in 8-bit 2’s complement notation (0b):

–31 in 8-bit 2’s complement notation (0b):

14–31 in 8-bit 2’s complement notation (0b):

6.190 Fall 2022 - 2 of 19 - Exam

D. (2 points): How many bits are required to encode decimal values ranging from -128 to 127 in two’s
complement representation? How many bits are required to encode decimal values ranging from 0 to 127
in unsigned binary representation? Provide your answer in decimal.

Bits required for two’s complement (in decimal):

Bits required for unsigned binary (in decimal):

E. (2 points) What is the result of the logical right shift 0b11011010 >> 2 in 2's complement notation?
What is the result of the arithmetic right shift 0b11011010 >> 2 in 2's complement notation? Provide
your answer in binary.

Logical right shift (in binary):

Arithmetic right shift (in binary):

G. (2 Points) What is the decimal equivalent of the 32-bit floating point number 0x41080000? The
format of 32-bit floating point encoding is shown below.
Show your work.

Decimal Equivalent:

6.190 Fall 2022 - 3 of 19 - Exam

Problem 2. What If (18 points)

Suppose that we have a function int is_uppercase(char c) that returns 1 if c is an uppercase
alphabetical character, and 0 otherwise. Similarly, suppose also that we have a function
int is_lowercase(char c) that returns 1 if c is a lowercase alphabetical character, and 0 otherwise.

Find below another function flip_case, which flips the case of each character in the given string.

// Given a string, flip the case of each alphabetical character.

void flip_case(char *x) {

while (*x != 0) {

if (is_uppercase(*x)) {

*x += 'a' - 'A'; // e.g., 'G' becomes 'g'

} else if (is_lowercase(*x)) {

*x += 'A' - 'a'; // e.g., 'g' becomes 'G'

}

x++; // <- For part A and B

}

}

A. (6 points) Assume that this code is to be run on a 32-bit RISC-V processor. Determine if each of the
following candidates is functionally equivalent to x++; in the above program.

Candidate CIRCLE ONE:

&x = &x + 1; YES NO

*(&x) = x + 1; YES NO

x = (char *)((uint32_t)x + 4); YES NO

B. (4 points) Suppose we are instead to replace x++; in the implementation of flip_case with f(&x);
and implement f as follows.

void f(__1__ x) {

__2__++;

}

Fill in the two blanks so that flip_case would retain its correctness. Pay attention to the existing code
that precedes and/or follows the blanks; you are not allowed to modify or get rid of it. Take note of the
order of operations.

Blank 1: Blank 2:

6.190 Fall 2022 - 4 of 19 - Exam

C. (8 points) Consider the following code, which makes a call to flip_case. The implementation of
flip_case is repeated below for your convenience.

#include <stdio.h>

int is_uppercase(char x); // implemented elsewhere

int is_lowercase(char x); // implemented elsewhere

// Given a string, flip the case of each alphabetical character.

void flip_case(char *x) {

while (*x != 0) {

if (is_uppercase(*x)) {

*x += 'a' – 'A'; // e.g., 'G' becomes 'g'

} else if (is_lowercase(*x)) {

*x += 'A' – 'a'; // e.g., 'g' becomes 'G'

}

x++;

}

}

int main() {

char str[] = "ababABAB";

char *p = str;

char **q = &p;

flip_case(???); // <- REPLACE HERE

printf("%s\n", str);

return 0;

}

For each expression, determine the string that the program above would print if we were to replace ???
with that expression. If the code would not compile, write “WON’T COMPILE”. If the exact output
cannot be determined, write “CAN’T TELL”.

Expression Answer

p

str + 2

(*q) + 8

&(*(&p))[4] - 1

6.190 Fall 2022 - 5 of 19 - Exam

Problem 3. C structs (13 points)

When communicating with our RISC-V microcontroller, we usually did so through the serial monitor
embedded in our IDE. A struct called SerialBuffer is defined below to represent our controller’s serial
communication buffer, which is responsible for handling incoming Serial messages.

struct SerialBuffer{
char termChar; // char to stop reading at
char charBuffer[64]; // 64 element wide buffer to store characters in
uint8_t size; // number of chars stored in buffer

};

A. (3 points) First let’s model how the buffer receives data. An example of an empty SerialBuffer,
with the newline as the terminating character, is shown below:

struct SerialBuffer buf;
buf.termChar = '\n';
buf.size = 0;

When the buffer receives a character, the buffer adds the char to the charBuffer array at the smallest
available index. It then also increments the active buffer size count by one.

Write a function receiveChar that takes in a SerialBuffer struct (by value) and a character to add to
the buffer and returns an updated SerialBuffer instance.
Assume the buffer has enough space for an incoming character, c.

struct SerialBuffer receiveChar(struct SerialBuffer buf, char c){

}

6.190 Fall 2022 - 6 of 19 - Exam

B. (4 points): Sometimes we want to peek into our serial buffer without removing any characters from the
buffer. Write a function called peekChars that receives a pointer to a buffer instance and returns how
many characters are in the buffer up to and including the first termination character (reflected in
termChar). Assume the buffer contains at least one terminating character.

int peekChars(struct SerialBuffer *buf){

}

C. (6 points): Consider the case where we want to read from an active SerialBuffer instance.

struct SerialBuffer buf;

This buffer has already been populated with multiple characters and at least one terminating character.

Create a function, readChars, that reads characters from the buffer up to and including the buffer’s
termination character. Store this string of characters as a properly terminated C-string in char
*message, which you can assume will be large enough to store the resulting message.

Be sure to update the buffer by both updating the charBuffer array and the buffer size.
As an example:

// up to this point buf has been populated and contains:
// buf.charBuffer = {'h','e','l','l','o','\n','b','y','e','\n', ...}

6.190 Fall 2022 - 7 of 19 - Exam

printf("%c", buf.termChar); // prints: "\n"
printf("%d", buf.size); // prints: "10"

char msg[65]; // large enough to store message from buffer
readChars(&buf, msg); // move chars up to termChar from buffer to msg

printf("%s", msg); // prints: "hello\n"
printf("%d", buf.size); // prints: "4"

// now at this point buf.charBuffer = {'b','y','e','\n', ...}

Note that readChars is passed a pointer to a SerialBuffer.
Be sure to leverage the peekChars function you just wrote.

void readChars(struct SerialBuffer *buf, char *message){

}

6.190 Fall 2022 - 8 of 19 - Exam

Problem 4. An Average Filter (9 points)

Suppose we have a function void find_mean(const float *arr, int n, float *mean) that
goes through the array arr of n real numbers, finds the arithmetic mean (i.e. average), and puts the result
in the variable pointed to by mean.

Implement the function mean_filter, which takes an array input of num_elems real numbers, finds
the arithmetic mean for each contiguous window of exactly window_size elements, and puts the results
in the array output.

void find_mean(const float *arr, int n, float *mean); // Defined elsewhere.

void mean_filter(const float *input, int num_elems, int window_size, float *output) {

for (int i = 0; i+window_size-1 < num_elems; i++) {

float buffer;

float *ptr = &buffer;

find_mean((A) , (B) , (C));

*(output+i) = (D) ;

}

}

// For example, if num_elems=4, input={3, 2, 7, 6}, window_size=3, then

// there are two contiguous windows, each with the following arithmetic means:

// output[0] = (3+2+7)/3.0 = 4.0

// output[1] = (2+7+6)/3.0 = 5.0

Fill in the blank (A):

Fill in the blank (B):

Fill in the blank (C):

Circle ALL correct answers (D):

buffer *buffer &buffer

ptr *ptr &ptr

ptr[0] *ptr[0] &ptr[0]

6.190 Fall 2022 - 9 of 19 - Exam

Problem 5. Assembly Language (16 points)

(A) (2 points) What is the hexadecimal encoding of the instruction srai t3, a2, 6? You can use the
template below to help you with the encoding. Please show your work for partial credit.

[31:25] [24:20] [19:15] [14:12] [11:7] [6:0]

0100000 shamt rs1 funct3 rd opcode

srai t3, a2, 6 instruction encoding (0x):________________________

For the RISC-V instruction sequences below, provide the hexadecimal values of the specified registers
after each sequence has been executed. Assume that each sequence execution ends when it reaches the
end label. Also assume that all registers are initialized to 0 before execution of each sequence begins.

(B) (4 points)

The first instruction executed is located at address 0x20.

. = 0x20

li x11, 0x600

lw x11, 0x0(x11)

bge x11, x0, L1

xori x12, x11, 0xA55

j end

L1: srli x12, x11, 8

end:

. = 0x600

X: .word 0xC0C0A0A0

Value left in x11: 0x______________________

Value left in x12: 0x______________________

6.190 Fall 2022 - 10 of 19 - Exam

(C) (10 points)

The first instruction executed is located at address 0x100.

. = 0x20
f:

slli x13, x12, 8

ret

. = 0x100

lui x11, 0x3

lw x12, 0x4(x11)

jal x1, f

ori x14, x1, 0xC2

end:

. = 0x3000

.word 0x11112222

.word 0x22224444

.word 0x33336666

Value left in x1: 0x______________________

Value left in x11: 0x_____________________

Value left in x12: 0x_____________________

Value left in x13: 0x_____________________

Value left in x14: 0x_____________________

6.190 Fall 2022 - 11 of 19 - Exam

Problem 6. Calling Convention (14 points)

You decided to write Snake in RISC-V assembly. You implement a drawBoard function to render the
game board. drawBoard uses one helper function, setPixel. to set a given pixel to be 0 (off) or 1
(on). It’s C function signature is shown below:

void setPixel(uint32_t *screen_buffer, uint8_t location, uint8_t val);

You can assume that setPixel works as expected and follows calling convention. You do not have access
to the assembly implementation of setPixel, so you cannot make any further assumptions about its
implementation.

Unfortunately, your program does not work, and you suspect that it is due to calling convention. Please
add appropriate instructions (either increment/decrement stack pointer, load word from stack, or save
word to stack only) into the blank spaces on the right to make drawBoard follow calling convention.
You can assume that drawBoard will work as expected once it follows the calling convention.

If the procedure already follows calling convention, write NO INSTRUCTIONS NEEDED. For full
credit, you should only save registers that must be saved onto the stack, restore registers that must be
restored, and minimize the number of instructions used. You may not need to use all the blank lines.

drawBoard Arguments:
(1) screen_buffer
(2) locations: array holding locations of snake segments on board
(3) num_locations: length of locations array.
(4) food: location of food

drawBoard:
slli a2, a2, 2
add a2, a2, a1
mv s0, a0

loop:
bge a1, a2, end
mv a0, s0
lw a1, 0(a1)
li a2, 1
call setPixel
addi a1, a1, 4
j loop

end:
mv a0, s0
mv a1, a3
li a2, 1
call setPixel
ret

drawBoard:

slli a2, a2, 2
add a2, a2, a1
mv s0, a0

6.190 Fall 2022 - 12 of 19 - Exam

code copied here
drawBoard:

slli a2, a2, 2
add a2, a2, a1
mv s0, a0

loop:
bge a1, a2, end
mv a0, s0
lw a1, 0(a1)
li a2, 1
call setPixel
addi a1, a1, 4
j loop

end:
mv a0, s0
mv a1, a3
li a2, 1
call setPixel
ret

loop:
bge a1, a2, end

mv a0, s0
lw a1, 0(a1)
li a2, 1

call setPixel

addi a1, a1, 4
j loop

6.190 Fall 2022 - 13 of 19 - Exam

code copied here
drawBoard:

slli a2, a2, 2
add a2, a2, a1
mv s0, a0

loop:
bge a1, a2, end
mv a0, s0
lw a1, 0(a1)
li a2, 1
call setPixel
addi a1, a1, 4
j loop

end:
mv a0, s0
mv a1, a3
li a2, 1
call setPixel
ret

end:

mv a0, s0
mv a1, a3
li a2, 1

call setPixel

ret

6.190 Fall 2022 - 14 of 19 - Exam

Problem 7. Stack Detective (14 points)

Consider the following C function which takes an array of unsigned 32 bit integers a of length b and
computes their product. We don’t have a multiply instruction in our RV32I system, so we use the mult
procedure (which you used in class, provided in appendix for reference) in order to actually do the
multiplication:

int arrayProd(uint32_t* a, uint32_t b){
// uint32_t *a: pointer to array
// uint32_t b: length of array
if (b == 1) {

return a[0];
}else {

// multiply both numbers:
return mult(arrayProd(a+1, b-1), a[0]);

}
}

The equivalent assembly procedure for this function is below:

arrayProd:
lw t0, 0(a0)
li a3, 1
beq a1, a3, end
addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT – prints ra, sp, a0, a1, a part of the stack
addi a0, a0, 4
addi a1, a1, -1
jal arrayProd
lw a1, 4(sp)
jal mult # returns product of a0 and a1 (see appendix)

lw ra, 0(sp)
addi sp, sp, 8

end:
mv a0, t0
ret

Note the sample point line above. When this line is encountered, the four registers ra, sp, a0, and a1
are printed as well as a region of the stack.

A. (2 points): What line of assembly should be substituted into the blank line in the arrayProd
procedure above?

Line of assembly:

6.190 Fall 2022 - 15 of 19 - Exam

B. (12 points): A user creates an array and passes it and its length into arrayProd. Immediately prior to
and immediately after the procedure call, a sample of the ra, sp, a0, and a1 is collected as well as a
region of the stack.

SAMPLE POINT – prints ra, sp, a0, a1, a part of the stack
jal arrayProd
SAMPLE POINT – prints ra, sp, a0, a1, a part of the stack

When the code is run, six sample snapshots are generated (including the one from before the initial call to
arrayProd). They are shown in chronological order below:
#1 sp =0x00080280 ra =0x00000000

a0 =0x00004000 a1 =0x00000005
Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000035c
0x80264: 0x00000011
0x80268: 0x00000008
0x8026c: 0x00000001
0x80270: 0x0000035c
0x80274: 0x00000011
0x80278: 0x00000808
0x8027c: 0x0000a321
0x80280: 0x00000781

#4 sp =0x00080268 ra =0x0000025C
a0 =0x00004008 a1 =0x00000003

Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000035c
0x80264: 0x00000011
0x80268: 0x0000025c
0x8026c: 0x00000005
0x80270: 0x0000025c
0x80274: 0x00000003
0x80278: 0x00000204
0x8027c: 0x00000001
0x80280: 0x00000781

#2 sp =0x00080278 ra =0x00000204
a0 =0x00004000 a1 =0x00000005

Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000035c
0x80264: 0x00000011
0x80268: 0x00000008
0x8026c: 0x00000001
0x80270: 0x0000035c
0x80274: 0x00000011
0x80278: 0x00000204
0x8027c: 0x00000001
0x80280: 0x00000781

#5 sp =0x00080260 ra =0x0000025C
a0 =0x0000400C a1 =0x00000002

Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000025c
0x80264: 0x00000008
0x80268: 0x0000025c
0x8026c: 0x00000005
0x80270: 0x0000025c
0x80274: 0x00000003
0x80278: 0x00000204
0x8027c: 0x00000001
0x80280: 0x00000781

#3 sp =0x00080270 ra =0x0000025C
a0 =0x00004004 a1 =0x00000004

Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000035c
0x80264: 0x00000011
0x80268: 0x00000008
0x8026c: 0x00000001
0x80270: 0x0000025c
0x80274: 0x00000003
0x80278: 0x00000204
0x8027c: 0x00000001
0x80280: 0x00000781

#6 sp =0x00080280 ra =0x00000204
a0 =0x000000F0 a1 =0x00000000

Address: Data:
0x80258: 0x000ff3af
0x8025c: 0x00000018
0x80260: 0x0000025c
0x80264: 0x00000008
0x80268: 0x0000025c
0x8026c: 0x00000005
0x80270: 0x0000025c
0x80274: 0x00000003
0x80278: 0x00000204
0x8027c: 0x00000001
0x80280: 0x00000781

6.190 Fall 2022 - 16 of 19 - Exam

Answer the following questions:

(3 points) What is the hexadecimal address of the instruction that originally calls arrayProd?

Address: (0x)

(3 points) What is the hexadecimal address of the instruction that is responsible for the recursive calls to
arrayProd?

Address: (0x)

(2 points) What is the hexadecimal address of the array a provided to the initial call of arrayProd?

Address: (0x)

(4 points) Specify a C array below that is identical to the one the user must have handed into arrayProd.

uint32_t a[] =

6.190 Fall 2022 - 17 of 19 - Exam

Appendix 1: String functions

char *strcat(char *dest, const char *src) - appends the string pointed to by src to the end of the string
pointed to by dest. This function returns a pointer to the resulting string dest.

char *strncat(char *dest, const char *src, size_t n) - appends the string pointed to by src to the end of
the string pointed to by dest up to n characters long. This function returns a pointer to the resulting string
dest.

char *strcpy(char *dest, const char *src) - copies the string pointed to, by src to dest. This returns a
pointer to the destination string dest.

char *strncpy(char *dest, const char *src, size_t n) - copies up to n characters from the string pointed
to, by src to dest. In a case where the length of src is less than that of n, the remainder of dest will be
padded with null bytes. This function returns the pointer to the copied string.

int strcmp(const char *str1, const char *str2) - compares the string pointed to, by str1 to the string
pointed to by str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

int strncmp(const char *str1, const char *str2, size_t n) - compares at most the first n bytes of str1 and
str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

char *strchr(const char *str, int c) - searches for the first occurrence of the character c (an unsigned
char) in the string pointed to by the argument str. This returns a pointer to the first occurrence of the
character c in the string str, or NULL if the character is not found.

char *strrchr(const char *str, int c) - searches for the last occurrence of the character c (an unsigned
char) in the string pointed to, by the argument str. This function returns a pointer to the last occurrence of
character in str. If the value is not found, the function returns a null pointer.

char *strstr(const char *haystack, const char *needle) - function finds the first occurrence of the
substring needle in the string haystack. The terminating '\0' characters are not compared. This function
returns a pointer to the first occurrence in haystack of any of the entire sequence of characters specified in
needle, or a null pointer if the sequence is not present in haystack.

char *strtok(char *str, const char *delim) - breaks string str into a series of tokens using the delimiter
delim. This function returns a pointer to the first token found in the string. A null pointer is returned if
there are no tokens left to retrieve.

6.190 Fall 2022 - 18 of 19 - Exam

Appendix 2: ASCII Table

Appendix 3: mult function

mult:
bge a0, a1, init
mv t0, a0
mv a0, a1
mv a1, t0

init:
mv t0, zero

loop:
beq a1, zero, done
addi a1, a1, -1
add t0, t0, a0
j loop

done:
mv a0, t0
ret

6.190 Fall 2022 - 19 of 19 - Exam

