
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1900 (6.0004): Introduction to Low-level Programming in C and Assembly

Fall 2022, Quarter 2

Name: Kerberos:

MIT ID #:

#1 (17) #2 (11) #3 (8) #4 (16) #5 (20) #6 (12) #7 (16) Total (100)

Exam content is on both sides of the exam sheets.

Enter your answers in the spaces designated in each problem. Show your work for potential partial credit.

6.190 Fall 2022 Q2 - 1 of 29 - Exam

This page intentionally left blank

6.190 Fall 2022 Q2 - 2 of 29 - Exam

Problem 1. Binary Encoding and Arithmetic (17 points)
A. (2 points): What is 17 in 8-bit two’s complement notation? What is -17 in 8-bit two’s complement
notation? Please write your answers in binary.

17 in 8-bit 2’s complement notation (0b):

-17 in 8-bit 2’s complement notation (0b):

B. (2 points) The 2026 FIFA World Cup will have 48 participating teams. How many bits would be
needed to represent the 48 unique values 0-47? If you are declaring a C variable that needs to be able to
represent the values 0-47, what data type should you use to minimize the number of bits that go unused?

Number of bits needed:

C data type used:

C. (3 points): What is (0xE0 & 0xA1) | 0xF5? Provide your result in both unsigned 8-bit binary and
unsigned 8-bit hexadecimal.

Result in unsigned 8-bit binary (0b):

Result in unsigned 8-bit hexadecimal (0x):

Problem continued on next page.

6.190 Fall 2022 Q2 - 3 of 29 - Exam

D. (3 points): Compute the 8-bit two’s complement sum of 0x22 and 0xFA using two’s complement
arithmetic. Provide your answer in 8-bit two’s complement binary notation. If the result cannot be
expressed in 8-bit 2’s complement, write “Not Possible”. To receive credit, you must show your
work using two’s complement arithmetic.

0x22 + 0xFA in 8-bit two’s complement binary (0b):

E. (4 points): You have a 5-bit value with the binary encoding xyz10 where x, y, and z can be either a 0
or a 1. Determine the two intermediate bitwise operations that should be performed on this number in
order to end up with the result x1z01.In other words, toggle bits 0 and 1 (so that a 0 “flips” to a 1 or a 1
flips to a 0) and set bit 3 to be 1. Bits 2 and 4 should not be modified. For each intermediate operation,
specify both the operator and the value of the second operand (ex. and 01010).

First bitwise operation to perform on xyz10

Second bitwise operation (to be performed on the
result of the first bitwise operation):

Problem continued on next page.

6.190 Fall 2022 Q2 - 4 of 29 - Exam

F. (3 Points) What is the decimal equivalent of the 32-bit floating point number 0x414c0000? The
format of 32-bit floating point encoding is shown below. Show your work for full credit. Note that the
number shown in the figure is NOT 0x414c0000.

Decimal equivalent of 32-bit floating point number
0x414c0000:

6.190 Fall 2022 Q2 - 5 of 29 - Exam

Problem 2. The Incredible Bulk (11 points)

We build a struct that enables us to modify multiple bits stored in a uint32_t somewhere in memory.

#include <stdint.h>
struct bulkReadOp {
uint32_t *valAddr; // address of value to modify
uint8_t start; // first (less significant) bit to read/write
uint8_t end; // last (more significant) bit to read/write

};

The struct member valAddr holds the address of a 32-bit integer. Struct members start and end hold
the indices of which bits to read from the value located at address valAddr. So, a bulk operation will
read bits start through end. An example of a 3-bit wide bulkReadOp, located between bits 5-7 at
address UNDISCLOSED_ADDRESS, is shown below:

struct bulkReadOp b;
b.valAddr = UNDISCLOSED_ADDRESS; // address of value to read
b.start = 5; // start at bit 5 (inclusive)
b.end = 7; // end at bit 7 (inclusive)

A. (5 points) Write a function bulkMask that returns a uint32_t value in which bits at positions start
through end (inclusive) are 1's and all other bits are 0's.

E.g., if start=5 and end=7, bulkMask should return 0b00000000000000000000000011100000.

For full credit, your solution should not use a loop or recursion.

uint32_t bulkMask(struct bulkReadOp op){

}

6.190 Fall 2022 Q2 - 6 of 29 - Exam

B. (6 points) Create a function, bulkRead, a function that receives a pointer to a bulkReadOp instance
and returns the value of consecutive bits start through end in valAddr. The least significant bit of the
result should correspond to the value of the start bit.

uint32_t x = 0b000100000011000011000000010110001;

struct bulkReadOp b;
b.valAddr = &x;
b.start = 5; // start at bit 5 (inclusive)
b.end = 7; // end at bit 7 (inclusive)

uint32_t result = readBulk(&b); // result == 5 (0b101)

For full credit, your solution should not use a loop or recursion. You may assume your bulkMask
implementation from the previous part is correct for use here.

uint32_t readBulk(struct bulkReadOp *op){

}

6.190 Fall 2022 Q2 - 7 of 29 - Exam

This page intentionally left blank

6.190 Fall 2022 Q2 - 8 of 29 - Exam

Problem 3. Arrays (8 points)

Consider the function below.

#include <stdio.h>
#include <stdlib.h>
int main(){

int x[] = {1, 3, 5};
int y[] = {10, 30};
int z[] = {100, 300};
int* arr[] = {x, y, z};
// CHECKPOINT
return 0;

}

What would the following expressions evaluate to if inserted at CHECKPOINT? If the behavior is
undefined, write UNDEFINED.

Expression Evaluation

*y

*(y+1)

**arr

*(arr[0])

*arr[0] + 2

*(arr[0] + 2)

arr[1][3]

(arr + 2)[0][1]

6.190 Fall 2022 Q2 - 9 of 29 - Exam

Problem 4. Mystery Function (16 points)

Study the functions and determine what they do. An ASCII table is provided to you for reference at the
end of the exam.

#include <stdio.h>

int len(char* str) {
int count = 0;
while(*str != 0) {

count++;
str++;

}
count++; // Pay attention to this line
return count;

}

void mystery1(char* s1, char* s2, char* s3) {
char* s4 = s3 + len(s1);
char* s5 = s4 + len(s2);

while(s3 < s4) {
*(s3++) = *(s1++);

}
while(s3 < s5) {

*(s3++) = *(s2++);
}

}

void mystery2(char* s, int strLen) {
int i;
for (i=0; i<strLen - 1; i++) {

if(s[i] < s[i + 1]) {
s[i] += 32;

}
}
s[i] = 0;

}

Problem continued on next page.

6.190 Fall 2022 Q2 - 10 of 29 - Exam

A. (4 points) Consider the test code below:

char s1[] = "MIT";
char s2[] = "FUN";
char s3[100];

mystery1(s1, s2, s3);

printf("%s\n", s3); // PRINT A

What will be printed by the line labeled PRINT A?

What will be printed by the line labeled PRINT A:

B. (4 points) Consider the test code below:

char s1[] = "MIT";
char s2[] = "FUN";
char s3[100];

mystery2(s1, len(s1));
mystery2(s2, len(s2));
mystery1(s1, s2, s3);

printf("%s\n", s3); // PRINT B

What will be printed by the line labeled PRINT B?

What will be printed by the line labeled PRINT B:

Problem continued on next page.

6.190 Fall 2022 Q2 - 11 of 29 - Exam

C. (4 points) Consider the test code below:

char s1[] = "MIT";
char s2[] = "FUN";
char s3[100];

mystery1(s1, s2, s3);
mystery2(s3, len(s3));

printf("%s\n", s3); // PRINT C

What will be printed by the line labeled PRINT C?

What will be printed by the line labeled PRINT C:

D. (4 points) Consider the test code below:

char s1[] = "MIT";
char s2[] = "FUN";
char s3[100];

mystery1(s1, s2, s3);
mystery2(s3, len(s1) + len(s2));

printf("%s\n", s3); // PRINT D

What will be printed by the line labeled PRINT D?

What will be printed by the line labeled PRINT D:

6.190 Fall 2022 Q2 - 12 of 29 - Exam

This page intentionally left blank

6.190 Fall 2022 Q2 - 13 of 29 - Exam

Problem 5. Assembly Language (20 points)

(A) (2 points) Convert the 32-bit encoding 0xFF52A393 to its corresponding RISC-V assembly
instruction. Make sure to include all operands of the instruction.

RISC-V instruction:________________________

For the RISC-V instruction sequences below, provide the hexadecimal values of the specified registers
after each sequence has been executed. Assume that execution of each sequence ends when it reaches the
end label. Also assume that all registers are initialized to 0 before execution of each sequence begins.

(B) (12 points)

The first instruction executed is located at address 0x100.

. = 0x100

lui a1, 0x73

addi a2, a1, 0x300

li a3, 0x42

slli a4, a3, 8

ori a5, zero, 0x510

andi a6, a5, 0x374

lw t0, -8(a5)

xori t1, zero, 0xFFF

end:

. = 0x500

.word 0x11111111

.word 0x22222222

.word 0x33333333

.word 0x44444444

.word 0x55555555

Value left in a1: 0x______________________

Value left in a2: 0x______________________

Value left in a3: 0x______________________

Value left in a4: 0x______________________

Value left in a5: 0x______________________

Value left in a6: 0x______________________

Value left in t0: 0x______________________

Value left in t1: 0x______________________

Problem continued on next page.

6.190 Fall 2022 Q2 - 14 of 29 - Exam

(C) (6 points)
The first instruction executed is located at address 0x100.

. = 0x100

li a0, 0x234

li a1, 6

jal ra, mystery

li a1, 5

end:

mystery:

mv t0, zero

loop: andi t1, a0, 1

add t0, t0, t1

srli a0, a0, 1

addi a1, a1, -1

bnez a1, loop

mv a0, t0

ret

Value left in ra: 0x______________________

Value left in a0: 0x_____________________

Value left in a1: 0x_____________________

6.190 Fall 2022 Q2 - 15 of 29 - Exam

Problem 6. Call Me (12 points)

Ben Bitdiddle wants to translate the following C functions into RISC-V Assembly procedures.

void swap(int *a, int *b) {

int tmp = *a;

*a = *b;

*b = tmp;

}

int less_than(int a, int b) {

return a < b;

}

void insert(int *A, int i) {

while (i > 0 && less_than(A[i], A[i-1])) {

swap(&A[i], &A[i-1]);

i--;

}

}

A. (2 points). The following is Ben’s implementation for swap and less_than. For each procedure,
determine whether the implementation follows the calling convention.

1. Does swap follow the calling convention? If not, why?

swap:

lw s0, 0(a0)

lw s1, 0(a1)

sw s0, 0(a1)

sw s1, 0(a0)

ret

Circle one: YES NO
One-sentence explanation if NO is circled:

2. Does less_than follow the calling convention? If not, why?

less_than:

slt a2, a0, a1

mv a0, a2

ret

Circle one: YES NO
One-sentence explanation if NO is circled:

Problem continued on next page.

6.190 Fall 2022 Q2 - 16 of 29 - Exam

B. (10 points). The following is Ben’s implementation for insert. Unfortunately, the program does not
adhere to the calling convention. Assuming that Ben’s swap and less_than implementations follow the
calling convention, add appropriate instructions into the blank spaces on the next two pages to make
insert follow the calling convention. You may only:

● increment/decrement stack pointer
● load word from stack
● save word to stack.

You may assume that the implementation will work as expected once it follows the calling convention.
You may not assume any further details about swap and less_than (e.g. the implementations may not
be the same as part A and may override caller-saved registers). You may not need all the blank lines.

insert: # parameters: a0 = A, a1 = i
mv s0, a0
mv s1, a1

insert_loop:
ble s1, zero, insert_end

calculate the address
slli t0, s1, 2
addi t0, s0, t0 # A+4*i

get the values
lw t1, 0(t0) # A[i]
lw t2, -4(t0) # A[i-1]

set up arguments
mv a0, t1
mv a1, t2
call less_than # returns a0 = (A[i]<A[i-1])

check the returned value / break out of the loop
beq a0, zero, insert_end
addi t3, t0, -4 # A+4*(i-1)

set up argument
mv a0, t0 # argument 0: A+4*i
mv a1, t3 # argument 1: A+4*(i-1)
call swap

addi s1, s1, -1 # i--
j insert_loop

insert_end:
ret (Write your answers on the next page.)

6.190 Fall 2022 Q2 - 17 of 29 - Exam

Write your answers in the given blank lines:

insert: # parameters a0 = A, a1 = i

mv s0, a0

mv s1, a1

insert_loop:

ble s1, zero, insert_end

calculate the addresses

slli t0, s1, 2

addi t0, s0, t0 # A+4*i

get the values

lw t1, 0(t0) # A[i]

lw t2, -4(t0) # A[i-1]

set up arguments

mv a0, t1

mv a1, t2

call less_than # returns a0 = (A[i]<A[i-1])

________________________________ (Continued on the next page.)

6.190 Fall 2022 Q2 - 18 of 29 - Exam

check the returned value / break out of the loop

beq a0, zero, insert_end

addi t3, t0, -4 # A+4*(i-1)

set up argument

mv a0, t0 # argument 0: A+4*i

mv a1, t3 # argument 1: A+4*(i-1)

call swap

addi s1, s1, -1 # i--

j insert_loop

insert_end:

ret

6.190 Fall 2022 Q2 - 19 of 29 - Exam

Problem 7. I Got Your Stack (16 points)

Consider the following C function which takes in an int array of length length and returns a pointer to
the first element in the array that is cleanly divisible by factor. If no value is ever found, the function
returns a NULL pointer.

int* find_clean_factor(int* arr, int factor, int length){
if(length==0){
return 0;

} else{
if ((*arr)%factor==0){
return arr;

else{
return find_clean_factor(arr+1, factor, length-1);

}
}
}

An equivalent assembly procedure is shown on the next page.

Problem continued on next page

6.190 Fall 2022 Q2 - 20 of 29 - Exam

1 find_clean_factor: #find_clean_factor procedure
2 addi sp, sp, -16
3 sw ra, 0(sp)
4 sw a0, 4(sp)
5 sw a1, 8(sp)
6 sw a2, 12(sp)
7 beq a2, zero, found_none
8 lw a0, 0(a0)
9 call rem
10 beq a0, zero, found_one
11 lw a0, 4(sp)
12 addi a0, a0, 4
13 lw a1, 8(sp)
14 lw a2, 12(sp)
15 addi a2, a2, -1
16 call find_clean_factor
17 j found_done
18 found_none:
19 addi a0, zero, 0
20 j found_done
21 found_one:
22 lw a0, 4(sp)
23 found_done:
24 lw ra, 0(sp)
25 addi sp, sp, 16
26 ret
..
.. #.....further down the file
..
58 rem: #remainder procedure
59 addi sp, sp, -4
60 sw ra, 0(sp)
61 blt a0, a1, r_done
62 sub a0, a0, a1
63 call rem
64 r_done:
65 lw ra, 0(sp)
66 addi sp, sp, 4
67 ret

Problem continued on next page.

6.190 Fall 2022 Q2 - 21 of 29 - Exam

An array is created and the procedure find_clean_factor is called. The contents of the array, the
value of factor, and the length of the array are unknown. During the run of the code, snapshots of
registers a0, a1, and a2 as well as a consistent portion of the stack are grabbed at two spots in the code:

● Just before the call find_clean_factor at line 16.
● Just before the call rem at line 63.

The nine resulting snapshots are provided on the following pages in chronological order. For snapshots
2 through 9, the memory locations that have been written since the previous snapshot are bolded and
italicized. For each snapshot the location of the stack pointer at that point in time is indicated with the
arrow. Analyze them and answer the questions found on page 24.

Snapshot 1: Snapshot 2: Snapshot 3:

a0 =0x00000016
a1 =0x00000005
a2 =0x00000004
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x00000001
0x8029c: 0x00000000
0x802a0: 0x00000003
0x802a4: 0x00000111
0x802a8: 0x00000000
0x802ac: 0x00000230 ←sp
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x00000011
a1 =0x00000005
a2 =0x00000004
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x00000001
0x8029c: 0x00000000
0x802a0: 0x00000003
0x802a4: 0x00000111
0x802a8: 0x000002ac ←sp
0x802ac: 0x00000230
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x0000000c
a1 =0x00000005
a2 =0x00000004
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x00000001
0x8029c: 0x00000000
0x802a0: 0x00000003
0x802a4: 0x000002ac ←sp
0x802a8: 0x000002ac
0x802ac: 0x00000230
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

Problem continued on next page.

6.190 Fall 2022 Q2 - 22 of 29 - Exam

Snapshot 4: Snapshot 5: Snapshot 6:

a0 =0x00000007
a1 =0x00000005
a2 =0x00000004
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x00000001
0x8029c: 0x00000000
0x802a0: 0x000002ac ←sp
0x802a4: 0x000002ac
0x802a8: 0x000002ac
0x802ac: 0x00000230
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x00000002
a1 =0x00000005
a2 =0x00000004
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x00000001
0x8029c: 0x000002ac ←sp
0x802a0: 0x000002ac
0x802a4: 0x000002ac
0x802a8: 0x000002ac
0x802ac: 0x00000230
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x00004004
a1 =0x00000005
a2 =0x00000003
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x000002ac
0x8029c: 0x000002ac
0x802a0: 0x000002ac
0x802a4: 0x000002ac
0x802a8: 0x000002ac
0x802ac: 0x00000230
0x802b0: 0x00000208 ←sp
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

Snapshot 7: Snapshot 8: Snapshot 9:

a0 =0x0000000a
a1 =0x00000005
a2 =0x00000003
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x000002ac
0x8029c: 0x00000230 ←sp
0x802a0: 0x0000024c
0x802a4: 0x00004004
0x802a8: 0x00000005
0x802ac: 0x00000003
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x00000005
a1 =0x00000005
a2 =0x00000003
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0xFFFFFFFF
0x80298: 0x000002ac ←sp
0x8029c: 0x00000230
0x802a0: 0x0000024c
0x802a4: 0x00004004
0x802a8: 0x00000005
0x802ac: 0x00000003
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

a0 =0x00000000
a1 =0x00000005
a2 =0x00000003
Address: Data:
0x80280: 0x000001f3
0x80284: 0x0000022a
0x80288: 0x0000b0b0
0x8028c: 0x00004000
0x80290: 0x00000005
0x80294: 0x000002ac ←sp
0x80298: 0x000002ac
0x8029c: 0x00000230
0x802a0: 0x0000024c
0x802a4: 0x00004004
0x802a8: 0x00000005
0x802ac: 0x00000003
0x802b0: 0x00000208
0x802b4: 0x00004000
0x802b8: 0x00000005
0x802bc: 0x00000004

Problem continued on next page.

6.190 Fall 2022 Q2 - 23 of 29 - Exam

Answer the following questions:
A. (1 points) What is the length of the array being analyzed?

B. (1 points) What is the address of the array being analyzed?

Address: (0x)

C. (2 points) What is the factor being analyzed?

Factor: (integer)

D. (2 points) What is the address of the instruction that initially calls find_clean_factor?

Address: (0x)

E. (2 points) What is the address of the instruction that recursively calls find_clean_factor?

Address: (0x)

F. (2 points) What is the address of the instruction that initially calls rem?

Address: (0x)

G. (2 points) What is the address of the instruction that recursively calls rem?

Address: (0x)

H. (4 points) Specify a C array below that is as identical as can be determined to the one the user must
have handed into find_clean_factor.

uint32_t a[] =

6.190 Fall 2022 Q2 - 24 of 29 - Exam

This page intentionally left blank

6.190 Fall 2022 Q2 - 25 of 29 - Exam

This page intentionally left blank

6.190 Fall 2022 Q2 - 26 of 29 - Exam

Appendix 1: String functions

char *strcat(char *dest, const char *src) - appends the string pointed to by src to the end
of the string pointed to by dest. This function returns a pointer to the resulting string dest.

char *strncat(char *dest, const char *src, size_t n) - appends the string pointed to by
src to the end of the string pointed to by dest up to n characters long. This function returns a pointer to
the resulting string dest.

char *strcpy(char *dest, const char *src) - copies the string pointed to, by src to dest.
This returns a pointer to the destination string dest.

char *strncpy(char *dest, const char *src, size_t n) - copies up to n characters from
the string pointed to, by src to dest. In a case where the length of src is less than that of n, the
remainder of dest will be padded with null bytes. This function returns the pointer to the copied string.

int strcmp(const char *str1, const char *str2) - compares the string pointed to, by str1
to the string pointed to by str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

int strncmp(const char *str1, const char *str2, size_t n) - compares at most the first
n bytes of str1 and str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

char *strchr(const char *str, int c) - searches for the first occurrence of the character c (an
unsigned char) in the string pointed to by the argument str. This returns a pointer to the first
occurrence of the character c in the string str, or NULL if the character is not found.

char *strrchr(const char *str, int c) - searches for the last occurrence of the character c
(an unsigned char) in the string pointed to, by the argument str. This function returns a pointer to
the last occurrence of character in str. If the value is not found, the function returns a null pointer.

char *strstr(const char *haystack, const char *needle) - function finds the first
occurrence of the substring needle in the string haystack. The terminating '\0' characters are not
compared. This function returns a pointer to the first occurrence in haystack of any of the entire
sequence of characters specified in needle, or a null pointer if the sequence is not present in haystack.

char *strtok(char *str, const char *delim) - breaks string str into a series of tokens using
the delimiter delim. This function returns a pointer to the first token found in the string. A null pointer is
returned if there are no tokens left to retrieve.

6.190 Fall 2022 Q2 - 27 of 29 - Exam

Appendix 2: ASCII Table

6.190 Fall 2022 Q2 - 28 of 29 - Exam

Appendix 3: C Operator Precedence

Precedence Operator Description Associativity
1 ++ -- Suffix/postfix increment and decrement Left-to-right

() Function call
[] Array subscripting
. Structure and union member access
-> Structure and union member access through pointer

2 ++ -- Prefix increment and decrement Right-to-left
+ - Unary plus and minus
! ~ Logical NOT and bitwise NOT
(type) Cast
* Indirection (dereference)
& Address-of

3 * / % Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively
7 == != For relational = and ≠ respectively
8 & Bitwise AND
9 ^ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 || Logical OR
13 ?: Ternary conditional Right-to-left
14 = Simple assignment

+= -= Assignment by sum and difference
*= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
&= ^= |= Assignment by bitwise AND, XOR, and OR

6.190 Fall 2022 Q2 - 29 of 29 - Exam

