6.190 Quiz Review Session
Practice Quiz from Fall 2022 (First Quarter)

Problem 1
Binary Arithmetic

A. What is 0x68 * (0x9C | 0x5A)? Provide your result in both unsigned
8-bit binary and unsigned 8-bit hexadecimal.

A. What is 0x68 * (0x9C | 0x5A)? Provide your result in both unsigned
8-bit binary an\unsigrﬁd 8-bit hexadecimal.

Bitwise
operators

What is 0x68 " (0x9C | 0x5A)? Provide your result in both unsigned

8-bit binary and unsigned 8-bit hexadecimal.

0x9C = 9b1001_1100
Ox5A = 0b0101_1010
XOR OR
(0x9C | Ox5A) = Bb1101_1110 = OxDE
a b out b out
0 0 0 0 0
OxDE = 9b1101_1110 —t —
0x68 = 0b0110_1000
0x68 *» OxDE = 0b1011_0110 = 0xB6 | ' ' ° |’ 0 |1
1 1 0 1 1

What is 0x68 " (0x9C | 0x5A)? Provide your result in both unsigned
8-bit binary and unsigned 8-bit hexadecimal.

9 C

Ox9C = ob1e01}l1100
Ox5A = 9b0101_1010
XOR OR
(Bx9C | Ox5A) = 8b1101_1110 = OxDE
a b out a b out
0 0 0 0 0 0
OxDE = 9b11901_1110
0 1 1 0 1 1
Ox68 = Pb0110_1000
Ox68 » OxDE = 0b1011_0110 = OxB6 9] 0]
1 1 0 1 1 1

B. What is the result of (0b001 > 0b101) && O0b100) == 0b001)? Assume
all numbers are unsigned. Provide your result in decimal.

B. What is the result of (0b001 > 0b101) && O0b100) == 0b001)? Assume
all numbers are unsigned. Provif your res‘lt in decinﬁl.

Logical + Relational
operators
(aka not bitwise)

B. What is the result of (0b001 > 0b101) && O0b100) == 0b001)? Assume
all numbers are unsigned. Provide your result in decimal.

O0b001 =1
O0b100 =4
Ob101 =5
1>5is False (0)
(0&&4)=0
(0==1)=0

C. (4 points): What are 14 and 31 in 8-bit 2’'s complement notation? What
is —31 in 8-bit 2's complement notation? Show how to compute 14-31
using 2’'s complement addition. What is the result in 8-bit 2’s complement
notation?

C. (4 points): What are 14 and 31 in 8-bit 2’'s complement notation? What
is —31 in 8-bit 2's complement notation? Show how to compute 14-31
using 2’'s complement addition. What is the result in 8-bit 2’s complement

notation?

e 14 = 0boooo_1110
e 31 = 0b000B1_1111

e -31= 0b1110_0001

~ to negate:

-A = ~A + 1

T~

M/ % =7 Ro L3P

N//R:
3/ >
\ />

-—

2 |
\ «)
0 &\

C. (4 points): What are 14 and 31 in 8-bit 2’'s complement notation? What
is —31 in 8-bit 2's complement notation? Show how to compute 14-31
using 2’'s complement addition. What is the result in 8-bit 2’s complement
notation?

e 14 = 0boooo_1110
e 31 = 0b000B1_1111
e -31= 0b1110_0001

e 0b0O0OB_1110
e 0Ob1110_06001
e 0b1110_1111 = -17

D. How many bits are required to encode decimal values ranging from
-128 to 127 in two’s complement representation? How many bits are
required to encode decimal values ranging from 0 to 127 in unsigned
binary representation? Provide your answer in decimal.

D. How many bits are required to encode decimal values ranging from
-128 to 127 in two’s complement representation? How many bits are
required to encode decimal values ranging from 0 to 127 in unsigned
binary representation? Provide your answer in decimal.

Two’s complement:
e Range of -128 — 127 is 128 + 127 + 1 (we need to include 0) = 256 values

that we need to represent
o 2(8 bits) = 256 values can be represented using 8 bits

e Ans: 8 bits

Unsigned binary representation:
e Range of 0 — 127 is 128 (includes zero) values that we need to represent

o 27 bits) = 128 values can be represented using 7 bits
e Ans: 7 bits

D. How many bits are required to encode decimal values ranging from
-128 to 127 in two’s complement representation? How many bits are
required to encode decimal values ranging from 0 to 127 in unsigned
binary representation? Provide your answer in decimal.

e Two’s complement range: [-2™7, 2™1-1]

e Unsigned range: [0, 2"-1]
e \Where n is the number of bits

Two’s complement

127 = 2"1-1
128 = 2"
log,128 = n-1
7/ =n-1

8=n

Unsigned

o 127 =2"1
o 128=2"

e [0g,128 =n
e 7/=n

E. (2 points) What is the result of the logical right shift 0b11011010 >> 2 in
2's complement notation? What is the result of the arithmetic right shift
0b11011010 >> 2 in 2's complement notation? Provide your answer in

binary

E. (2 points) What is the result of the logical right shift 0b11011010 >> 2 in
2's complement notation? What is the result of the arithmetic right shift
0b11011010 >> 2 in 2's complement notation? Provide your answer in

binary

e Logical: right shift in zeros
e Arithmetic: right shift in value of MSB

o To preserve the sign of the value

E. (2 points) What is the result of the logical right shift 0b11011010 >> 2 in
2's complement notation? What is the result of the arithmetic right shift
0b11011010 >> 2 in 2's complement notation? Provide your answer in

binary

e Logical: right shift in zeros
e Arithmetic: right shift in value of MSB

o To preserve the sign of the value

e Logical: 9b1101_1010 >> 2 ObBB11_0110
e Arithmetic: 0b1101_1010 >> 2 = 0b1111_06110

G. What is the decimal equivalent of the 32-bit floating point number
0x410800007 The format of 32-bit floating point encoding is shown below.
Show your work

sign exponent (8 bits) fraction (23 bits)

0J0f1f1j1,1(1(0|0J0O|1|0(0|0O|0|0|0O|0|0O0|0|0(0|0O|0|0|0O(0O|0O|0|0O|0O(0O

Qe

31 30 2322 (bit index)

Value = (—1)sign.2exp—127.(1 4 %23 p,. .271)

G. What is the decimal equivalent of the 32-bit floating point number
0x410800007 The format of 32-bit floating point encoding is shown below.
Show your work

sign exponent (8 bits) fraction (23 bits)

0y0f1f1j1,1/1(0|0J0O|1(0(0|0|0O|0|0O(0O|0O|0|0|0|0O|0|0|0|0O(0O|0O|0|0|(0O

31 30 23 22 (bit index) 0
Value = (—1)S18". 28xP~127. (1 4 3123 byy_;277)
0x41080000 = 0100_ _0000_1000_0000_0000_0000_0000

\ b 19 b _(23-4), soi==
(-1)0 * 2130-127 % (4 4 24) = 23 * 10625 = 8.5

Problem 2

What If

// Given a string, flip the case of each alphabetical character.
void flip_ case(char *x) {
while (*x != 0) {
if (is_uppercase(*x)) {

¥y 4= '3' - 'A'; // e.g., 'G' becomes 'gl
} else if (is_lowercase(*x)) {
* += 'A' - 'a'y; // e.g., 'g' becomes 'G’

}
X++; // <- For part A and B

A. Which candidates are equivalent to x++; in the above program?

Candidate

CIRCLE ONE:

& = &x + 1;

¥(&x) = x + 1;

x = (char *)((uint32_t)x + 4);

& = & + 1;

A. Which candidates are equivalent to x++; in the above program?

Candidate

CIRCLE ONE:

& = &x + 1;

YES NO

*(&X) = x + 1;

x = (char *)((uint32_t)x + 4);

Address of x Increment by 1

& = & + 1;

Address of x

Address of X = Address of X + 1

Doesn’t work!
X is a pointer! Incrementing the
address of the pointer is not the same
thing as incrementing the pointer!

A. Which candidates are equivalent to x++; in the above program?

Candidate

CIRCLE ONE:

& = &x + 1;

YES NO

(&) = x + 1;

x = (char *)((uint32_t)x + 4);

(&) = x + 1;

A. Which candidates are equivalent to x++; in the above program?

Candidate CIRCLE ONE:
&x = &x + 1; YES NO
*(&x) = x + 1; YES NO

x = (char *)((uint32_t)x + 4);

increment x by one
(&) = x + 1;

same thing as x

*(&X) = X

Works just fine!
Obtaining the address of x, and then
dereferencing that is just the same
thing as writing down x.

Which candidates are equivalent to x++; in the above program?

Candidate CIRCLE ONE:
& = &x + 1; YES NO
(&) = x + 1; YES NO

x = (char *)((uint32_t)x + 4);

X = (char *)((uint32_t)x + 4);

A. Which candidates are equivalent to x++; in the above program?

Candidate CIRCLE ONE:

& = &x + 1; YES NO

*(&x) = x + 1; YES NO

x = (char *)((uint32_t)x + 4); YES NO

Cast address into 32-bit number Doesn’t work!

x = (char *)((uint32 t)x + 4); Theidea was good but the execution
wasn’t. Chars are 1 byte wide, so we

Cast back into a char pointer Add 4 bytes to it .
P y should have added 1 instead of 4.

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

void f(_ 1 x) {
_ 2t

}

Blank 1: Blank 2:

Things to note:
e Argument to function f() is a reference to x,
since we pass in &x (the address of x).

e Xs a char pointer (char *).

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

void f(_ 1 x) {
_ 2t

}

Blank 1: Blank 2:

char**

Make the argument type a reference
to a char”!
A pointer to a char pointer!

B. Suppose we are instead to replace x++; in the implementation of
flip_case with f(&x); and implement f as follows.

void f(_ 1 x) {
2 ++;

}

Blank 1: Blank 2:
(")

char**

Increment x, not the pointer to x!
Dereference x before incrementing, but
be careful of operator precedence.
(++ occurs before *).

Make the argument type a reference
to a char”!
A pointer to a char pointer!

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

int main() {

char str[] = "ababABAB";

char *p = str;|// char * that points to str
char **q = &p;|// char ** that points to p \
flip_case(???); // <- REPLACE HERE
printf("%s\n", str);

return 9;

Here is flip_case again:

// Given a string, flip the case of each alphabetical character.
void flip_ case(char *x) {
while (*x != 0) {
if (is_uppercase(*x)) {

*x += 'a' - 'A'; // e.g., 'G' becomes 'g'
} else if (is_lowercase(*x)) {
* += 'A' - 'a'y; // e.g., 'g' becomes 'G’

}
X++; // <- For part A and B

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Expression Answer

P

str + 2

(5q) +i8

&(*(&p))[4] - 1

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Expression Answer

p ABABabab
str + 2

(*a) + 8

&(*(&p))[4] - 1

Passing p should just flip the case of "ababABAB".

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Expression Answer

p ABABabab
str + 2 abABabab
(*q) + 8

&(*(&p))[4] - 1

Passing str+2 should just flip the case of the last 6 chars of str.
Offsetting by 2 skips the first 2 chars.

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Expression Answer

D ABABabab
str + 2 abABabab
(*q) + 8 ababABAB
&(*(&p))[4] - 1

Passing (*q) + 8 should avoid flipping anything. We’ve skipped all 8 chars.
(*q) is the same as str, and offsetting by 8 moves the str up to the null char.

C. For each expression, determine the string that the program on the previous page would
print if we were to replace ?7?7? with that expression. If the code would not compile, write
“WON'T COMPILE”. If the exact output cannot be determined, write “CAN’T TELL”.

Expression Answer

D ABABabab
str + 2 abABabab
(*q) + 8 ababABAB
&(*(&p))[4] - 1 abaBabab

*(&p) is just p again. &(p)[4] offsets p by four, and subtracting one brings the
offset to 3. This skips the first three characters when flipping.

Problem 3

C structs

Problem 3. C structs (13 points)

When communicating with our RISC-V microcontroller, we usually did so through the serial monitor
embedded in our IDE. A struct called SerialBuffer is defined below to represent our controller’s serial
communication buffer, which is responsible for handling incoming Serial messages.

struct SerialBuffer{

char termChar; // char to stop reading at
char charBuffer[64]; // 64 element wide buffer to store characters in
uint8 t size; // number of chars stored in buffer

};

A. (3 points) First let’s model how the buffer receives data. An example of an empty SerialBuffer,
with the newline as the terminating character, is shown below:

struct SerialBuffer buf;
buf.termChar = '\n';
buf.size = 0;

When the buffer receives a character, the buffer adds the char to the charBuffer array at the smallest
available index. It then also increments the active buffer size count by one.

Write a function receiveChar that takes in a SerialBuffer struct (by value) and a character to add to
the buffer and returns an updated SerialBuffer instance.
Assume the buffer has enough space for an incoming character, c.

struct SerialBuffer receiveChar(struct SerialBuffer buf, char c){

struct SerialBuffer receiveChar(struct SerialBuffer buf, char c){

struct SerialBuffer receiveChar(struct SerialBuffer buf, char c){

// one possible answer
buf.charBuffer[buf.size++] = c;
return buf;

B. (4 points): Sometimes we want to peek into our serial buffer without removing any characters from the
buffer. Write a function called peekChars that receives a pointer to a buffer instance and returns how
many characters are in the buffer up to and including the first termination character (reflected in
termChar). Assume the buffer contains at least one terminating character.

int peekChars(struct SerialBuffer *buf){

B. (4 points): Sometimes we want to peek into our serial buffer without removing any characters from the
buffer. Write a function called peekChars that receives a pointer to a buffer instance and returns how
many characters are in the buffer up to and including the first termination character (reflected in
termChar). Assume the buffer contains at least one terminating character.

int peekChars(struct SerialBuffer *buf){

// one possible answer

int count = 0;

while (buf->charBuffer[count] != buf->termChar){
count++;

}

count++;

return count;

C. (6 points): Consider the case where we want to read from an active SerialBuffer instance.

struct SerialBuffer buf;

This buffer has already been populated with multiple characters and at least one terminating character.

Create a function, readChars, that reads characters from the buffer up to and including the buffer’s
termination character. Store this string of characters as a properly terminated C-string in char
*message, which you can assume will be large enough to store the resulting message.

Note that readChars is passed a pointer to a SerialBuffer.
Be sure to leverage the peekChars function you just wrote.

void readChars(struct SerialBuffer *buf, char *message){

Be sure to update the buffer by both updating the charBuffer array and the buffer size.
As an example:

// up to this point buf has been populated and contains:
// buf.charBuffer = {'h','e','1','1",'0"','\n",'b",'y"','e',"\n", ...}

printf("%c", buf.termChar); // prints: "\n"
printf("%d", buf.size); // prints: "10"

char msg[65]; // large enough to store message from buffer
readChars(&buf, msg); // move chars up to termChar from buffer to msg

printf("%s", msg); // prints: "hello\n"
printf("%d", buf.size); // prints: "4"

// now at this point buf.charBuffer = {'b','y"','e','\n", ...}

void readChars(struct SerialBuffer *buf, char *message){

void readChars(struct SerialBuffer *buf, char *message){

// a possible answer

int count = peekChars(buf);

//load bytes onto message
for (int i = @; i < count; i++){
*(message + i) = buf->charBuffer[i];

}

//terminate message
*(message + count) = 0;

//update buffer

for (int i = count; i < buf->size; i++){
buf->charBuffer[i-count] = buf->charBuffer[i];

}

buf->size -= count;

Problem 4

An Average Filter

Fill in the blanks.

void find_mean(const float *arr, int n, float *mean); // Defined elsewhere.

void mean_filter(const float *input, int num_elems, int window _size, float *output) {
for (int i = @; i+window_size-1 < num_elems; i++) {
float buffer;
float *ptr = &buffer;
find_mean(___(A) (B) ., Q) ;s

*(output+i) = (D) 3

// For example, if num_elems=4, input={3, 2, 7, 6}, window _size=3, then

// there are two contiguous windows, each with the following arithmetic means:
// output[@] = (3+2+7)/3.0 = 4.0

// output[1l] = (2+7+6)/3.0 = 5.0

Fill in the blanks.

void find_mean(const float *arr, int n, float *mean); // Defined elsewhere.

void mean_filter(const float *input, int num_elems, int window _size, float *output) {
for (int i = @; i+window_size-1 < num_elems; i++) {
float buffer;
float *ptr = &buffer;
find_mean(___(A) (B) , Q) ;s

*(output+i) = (D)

}

// For example, if num_elems=4, input={3, 2, 7, 6}, window_size=3, then

// there are two contiguous windows, each with the following arithmetic means:
// output[@] = (3+2+7)/3.0 = 4.0

// output[1l] = (2+7+6)/3.0 = 5.0

find_mean() averages n elements in an float array arr and returns the mean in
float pointer mean.

Fill in the blanks.

Fill in the blank (A):

Fill in the blank (B):

Fill in the blank (C):

Circle ALL correct answers (D):

Fill in the blanks.

Fill in the blank (A):
input+i or &input[i]

Fill in the blank (B):

Fill in the blank (C):

Circle ALL correct answers (D):

As we iterate over the elements in the float array input, we need to offset the
array being passed into find_mean().

Fill in the blanks.

Fill in the blank (A):
input+i or &input[i]
Fill in the blank (B):
window_size
Fill in the blank (C):

Circle ALL correct answers (D):

We only want to calculate the mean over window size arguments!

Fill in the blanks.

Fill in the blank (A):
input+i or &input[i]
Fill in the blank (B):
window_size
Fill in the blank (C):

ptr or &buffer

Circle ALL correct answers (D):

There are multiple ways of passing along a reference to the float buffer that
will contain the result of our averaging.

Fill in the blanks.

Fill in the blank (A):
input+i or &input[i]
Fill in the blank (B):
window_size
Fill in the blank (C):

ptr or &buffer

Circle ALL correct answers (D):

buffer *buffer &buffer
ptr *ntr &ptr
ptr[o] *ptr[0] &ptr[o]

Multiple ways of updating the array! We just want to store the value of buffer
in the output array. Directly storing buffer or dereferencing ptr work.

Problem 5

Assembly Language

A. What is hexadecimal encoding of the instruction srai t3, a2,

You can use the template below to help you with the encoding.

[31:25] [24:20] [19:15] [14:12] [11:7] [6:0]

0100000 shamt 15l funct3 rd opcode

SRAI srai rd, rs1, shamt

| 0100000 | shamt] rsl | 101 | rd | 0010011 |SRAI|

Registers Symbolic names
x0 zero
x1 ra
X2 sp
x3 gp
x4 tp
x5-x7 to-t2
x8-x9 s0-s1
x10-x11 av-al
x12=x17 az-a7
x18-x27 s2-sl11
x28-x31 t3-t6

6?7

A. What is hexadecimal encoding of the instruction srai t3, a2,
You can use the template below to help you with the encoding.

6?7

[31:25] [24:20] [19:15] [14:12] [11:7] [6:0]
0100000 shamt 15l funct3 rd opcode
SRAI srai rd, rs1, shamt
| 0100000 | shamt | rsl | d0r" | rd | 0010011 | SRAI|
Registers Symbolic names
e shamt=6=0b x? Z8ro
X r
e rs1=a2=x12=12=0b01100 o sz
e rd=1t3=x28=28=0b11100 X3 gp
e funct3 =0b101 L.
e Opcode =0b0010011 x8-x9 s0-s1
e 0100000 ~01100_101_11100_0010011 ot e
x12-x17 az2-a7
e (0x40665E13 x18-x27 s2-s11
x28-x31 t3-t6

B. provide the hexadecimal values of the specified registers after each
sequence has been executed. Assume that each sequence execution
ends when it reaches the end label

. = 0x20
1i x11, ©x600
1w x11, oxe(x11)
bge x11, x0, L1
Xori x12; %11, 9OXA55
j end

L1y srli x12, x11, 8
end:

. = OX600
X: .word OxCOCOALAQ

B. provide the hexadecimal values of the specified registers after each
sequence has been executed. Assume that each sequence execution
ends when it reaches the end label

x11 = 0x600
x11 = OxCOCOAOAO

x11 MSB is 1, so negative

o We don’t branch

x12 = OxCOCOAOAQ * OxA55

Don’t forget to sign extend

0xCOCOAOAQ YOR Truth Tabl
OXFFFFFAS5 rut S
Ox3F3f5afhb Input 1 Input 2 Output

0 1 1

0 0 0

1 1 0

1 0 1

. = 0x20
1i x11, Ox600
1w x11, 0x0(x11)
bge x11, x0, L1
Xori x12, %11, OXAS55
j end

L1y srli x12, x11, 8
end:

. = OX600
X: .word OxCOCOALAQ

For the RISC-V instruction sequences below, provide the hexadecimal values of the specified registers
after each sequence has been executed. Assume that each sequence execution ends when it reaches the

end label. Also assume that all registers are initialized to 0 before execution of each sequence begins.

The first instruction executed is located at address 0x100

0x20

slli ¥13, %12, 8 Value left in x1: 0x
ret

Value left in x11: 0x

0x100
lui x11, ©x3 Value left in x12: 0x
1w x12, ox4(x11)
jal X1, f Value left in x13: 0x
ori x14, x1, ©xC2
end: Value left in x14: 0x

. = Ox3000

.word 0x11112222
.word 0x22224444
.word ©x33336666

For the RISC-V instruction sequences below, provide the hexadecimal values of the specified registers
after each sequence has been executed. Assume that each sequence execution ends when it reaches the
end label. Also assume that all registers are initialized to 0 before execution of each sequence begins.

The first instruction executed is located at address 0x100.

Starting at 0x100, x11 becomes 0x3000 since

lui shifts the immediate by 12 and then sets the 2 = e
register to that result a1l xa3, xa2, 8 Value left in x1: 0x 1ec
x12 = 0x22224444 since 1w x12, 0x4(x11) ret el ot i 1120 .
loads the value at address 0x3004 . - ox100 s
jal x1, f unconditionally jumps to the £ label e iz Bxalsand Valueleftin x12: 0x___22224444_____
and executes the code there jal x1, f Value left in x13: 0x____ 22444400
. ori x14, x1, oxC2
o x1 getg set to the address of the jal end: S —
instruction + 4 = 0x10C
. . . . = 0x3000
m Every instruction is 4 bytes word @x11112222

o xl isthe ra register ord oxazanan

x13 = 0x22444400 '

ret makes the program jump back to the address
stored in ra which is also x1
x14 =0xC2 | 0x10C = Ox1CE

Problem 6

Calling Convention

Calling a function

To call fn, use:

e callfn
e jalra,fn
e jalfn

Two things happen:

e reg[ra] <=reg[pc] + 4

e then, pc becomes the address of fn

To return, use:

ret
e jalrx0, O(ra)

Only one thing happens:

e reg[pc] <=req]ra]

Calling convention

Arguments in a0 - a7 (x10 - x17)

Return values in a0 - a1 (x10 - x11)

Caller-saved registers: a, t, ra
- When you call a function, these registers may lose their original values

- Store them before you call a function if you will need them later

Callee-saved registers: s, sp
- When you call a function, these registers will not lose their original values

- To use them, make sure to fulfill your responsibility as a callee too

drawBoard Arguments:
(1) screen_buffer
(2) locations: array holding locations of snake segments on board
(3) num_locations: length of locations array.

(4) food: location of food

Q | # # H HH

loop:

end:

rawBoard:

slli a2, a2, 2
add a2, a2, al
mv sO, a0

bge al, a2, end

mv ad, sO
1w a1, o(al)
1i a2, 1

call setPixel
addi al, al, 4
j loop

mv aod, sO
mv al, a3
11 az, 1

call setPixel
ret

You decided to write Snake in RISC-V assembly. You implement a drawBoard function to render the
game board. drawBoard uses one helper function, setPixel. to set a given pixel to be 0 (off) or 1
(on). It’s C function signature is shown below:

void setPixel(uint32_t *screen_buffer, uint8_t location, uint8_t val);

You can assume that setPixel works as expected and follows calling convention. You do not have access
to the assembly implementation of setPixel, so you cannot make any further assumptions about its
implementation.

Unfortunately, your program does not work, and you suspect that it is due to calling convention. Please
add appropriate instructions (either increment/decrement stack pointer, load word from stack, or save
word to stack only) into the blank spaces on the right to make drawBoard follow calling convention.
You can assume that drawBoard will work as expected once it follows the calling convention.

If the procedure already follows calling convention, write NO INSTRUCTIONS NEEDED. For full
credit, you should only save registers that must be saved onto the stack, restore registers that must be
restored, and minimize the number of instructions used. You may not need to use all the blank lines.

Calling convention refresher

drawBoard:

loop:

end:

slli a2, a2, 2
add a2, a2, al
mv sO, a0

bge al, a2, end
mv ad, sO

1w al, 9(al)

11 a2, 1

call setPixel
addi a1, al, 4
j loop

mv ad, sO

mv al, a3

1i a2, 1

call setPixel

ret «—

Since we are calling another procedure, we must store ra before
the first call instruction and load it back before we ret
o Only need to store ra once, no matter how many
procedures are called
o drawBoard needs the original ra value so ret can return
to the correct address
s registers are callee saved. We must store their values before
we, as a callee, use them. We then load their original values right
before we ret.
o This is why s register values persist between procedure
calls
a registers are caller saved. If we call other procedures and these
registers have values we want to use after, we must store them to
then load back after.
o a and t registers are not guaranteed to stay the same
between calls
o We load them back every time we need that stored value

drawBoard Arguments:
(1) screen_buffer

(2) locations: array holding locations of snake segments on board
(3) num_locations: length of locations array.

(4) food: location of food

drawBoard:

loop:

end:

slli a2, a2, 2
add a2, a2, al
mv sO, a0

bge al, a2, end
mv ad, sO

1w al, 9(al)

11 a2, 1

call setPixel
addi a1, al, 4
j loop

mv ad, sO

mv al, a3

1i a2, 1

call setPixel
ret

Allocate enough space on the stack
Store ra because we call other
procedures
Store a3 because we use its value
here also aftera call setPixel
Store s0 because we will be using it
(overwriting it with our own value)
Store a2 since we care about its
value after we set it with s111 and
add
o And we need it for our branch
condition after a potential call
setPixel from looping

drawBoard:
____addi sp, sp, -20
____sw ra, 0(sp)
______sw a3, 8(sp)

sw s@, 12(sp)

slli a2, a2, 2
add a2, a2, al
mv s@, a0

sw a2, 4(sp)

drawBoard Arguments:
(1) screen_buffer

(2) locations: array holding locations of snake segments on board

(3) num_locations: length of locations array.

(4) food: location of food

drawBoard:
s11li az; a2; 2
add a2, a2, al
mv sO, a0
loop:
bge al, a2, end
mv ao, sO
1w al, o(al)
11 a2, 1
call setPixel
addi a1, al, 4
j loop
end:
mv ad, sO
mv al, a3
1i a2, 1
call setPixel
ret

We store a1l because we will be
using this same value to branch
Load al and a2 since their values
could have changed with call

setPixel

(@)

And we use them for our

branch instruction

loop:
bge al, a2, end

sw al, 16(sp)

mv a0, sO
1w al, 9(al)
11 @825 1
call setPixel

1w a1, 16(sp)

1w a2, 4(sp)

addi al, al, 4
j loop

drawBoard Arguments:
(1) screen_buffer

(2) locations: array holding locations of snake segments on board

(3) num_locations: length of locations array.

(4) food: location of food

drawBoard:

loop:

end:

slli a2, a2, 2
add a2, a2, al
mv sO, a0

bge al, a2, end
mv ad, sO

1w al, 9(al)

11 a2, 1

call setPixel
addi a1, al, 4
j loop

mv ad, sO

mv al, a3

1i a2, 1

call setPixel
ret

We load a3 since we want to use its
original value
At the end, we load back s0 and ra
to get their original values
o ra is used to return to the
proper address after the
procedure is done
o s0 needs to keep its original
value after we use it
Don'’t forget to increment sp since
we are no longer use that stack
space
al, a2, and a3 are never
guaranteed to be the values they
started as, so we don’t need to load
them

end:

1w a3, 8(sp)

mv ad, sO
mv al, a3
11 a2, 1
call setPixel

1w s0@, 12(sp)

1w ra, o(sp)

addi sp, sp, 20

ret

Problem 7

Stack Detective

Problem 7. Stack Detective (14 points)

Consider the following C function which takes an array of unsigned 32 bit integers a of length b and
computes their product. We don’t have a multiply instruction in our RV32I system, so we use the mult

procedure (which you used in class, provided in appendix for reference) in order to actually do the
multiplication:

int arrayProd(uint32_t* a, uint32_t b){
// uint32_t *a: pointer to array
// uint32_t b: length of array

if &b == 1) 4
return a[0];
telse {

// multiply both numbers:
return mult(arrayProd(a+l, b-1), a[@0]);

The equivalent assembly procedure for this function is below:

arrayProd:
lw tO, 0(a0)
li a3, 1
beq al, a3, end
addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4
addi al, a1, -1
jal arrayProd
lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)

addi sp, sp, 8

end:
mv a@, to
ret

Note the sample point line above. When this line is encountered, the four registers ra, sp, a0, and al
are printed as well as a region of the stack.

A. What line of assembly should be substituted into the blank line in the
arrayProd procedure above?

arrayProd:
lw tO, 0(a0)
1li a3, 1
beq al, a3, end
addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4
addi al, a1, -1
jal arrayProd
lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)

addi sp, sp, 8
end:

mv a@, to

ret

A. What line of assembly should be substituted into the blank line in the
arrayProd procedure above?

arrayProd:
1w to, o(a0) (0=2a[0]
1li a3, 1 g3=1
beq al, a3, end Ifb==1gotoend
addi sp, sp, -8
sw ra, @(sp) save ra, t0 == a[0] to stack
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, ad, 4 a0 =a +1, go to the next address in the int array a. An int is 4 bytes o add 4
addi al, al, -131=b-1
jal arrayProd Recursive call, inputs a+1 and b-1
1w al, 4(sp) al=t0
jal mult # returns product of a@ and al (see appendix)ga(= whatever arrayProd returns

1w ra, 0(sp) reload ra and reset stack pointer
addi sp, sp, 8
end:
mv a@, t@ Resultisin t0, put it in return register... how did the result get into t0?

ret

A. What line of assembly should be substituted into the blank line in the
arrayProd procedure above?

Ans: mv t0, a0

e Our answer from the mult procedure call is in a0.
e {0 is not guaranteed to be known after the call

e Before we ret, we move t0 into a0
o So we must ensure t0 is also the value we are returning

B. A user creates an array and passes it and its length into arrayProd.
Immediately prior to and immediately after the procedure call, a sample of
the ra, sp, a0, and a1 is collected as well as a region of the stack.

B. A user creates an array and passes it and its length into arrayProd.
Immediately prior to and immediately after the procedure call, a sample of

the ra, sp, a0, and a1 is collected as well as a region of the stack.

#1 sp =0x00080280 ra =0x00000000 #2 sp =0x00080278 ra =0x00000204 #3 sp =0x00080270 ra =0x0000025C
ad =0x00004000 al =0x00000005 ad =0x00004000 al =0x00000005 a0 =0x00004004 al =0x00000004
Address: Data: Address: Data: Address: Data:
0x80258: 0x000ff3af 0x80258: 0Ox000ff3af 0x80258: Ox000ff3af
0x8025c: ©x00000018 0x8025c: 0x00000018 0x8025c: 0x00000018
0x80260: ©x0000035¢C 0x80260: 0x0000035¢ 0x80260: Ox0000035¢
0x80264: 0x00000011 0x80264: 0x00000011 0x80264: 0x00000011
0x80268: 0x00000008 Before call to | oxs0268: exoeoeoe0s 0x80268: Ox00000008
0x8026C: ©x00000001 0x8026¢: Ox00000R0O1 0x8026¢: 0x00000001
ox80270 oxaoeoo3sc arrayProd 0x80270: 0x0000035¢ 0x80270: ©x0000025C
0x80274: 0x00000011 0x80274: 0x00000011 0x80274: 0x00000003
0x80278: ©x00000808 —P| 0x80278: 0x00000204 0x80278: 0x00000204
0x8027c: 0Ox0000a321 0x8027c: ©x00000001 0x8027c: 0x00000001
— | 0x80280: 0x00000781 0x80280: 0x00000781 0x80280: 0x00000781
#4 sp =0x00080268 ra =0x0000025C #5 sp =0x00080260 ra =0x0000025C #6 sp =0x00080280 ra =0x00000204
ad =0x00004008 al =0x00000003 a0 =0x0000400C al =0x000D2 ad =0x00000OFO al =0x000O0000
Address: Data: Address: Data: Address: Data:
0x80258: 0x000ff3af 0x80258: Ox000ff3af 0x80258: 0Ox000ff3af
0x8025¢: 0x00000018 0x8025¢: 0x00000018 0x8025c: 0x00000018
0x80260: ©x0000035¢C —p| 0x80260: 0x0000025¢ 0x80260: 0Ox0000025¢c
0x80264: 0x00000011 0x80264: 0x00000008 0x80264: 0x00000008
—P 0x80268: 0Ox0000025¢ 0x80268: 0x0000025¢ 0x80268: 0x0000025¢
0x8026¢: 0x00000005 0x8026¢: 0x00000005 0x8026¢C: 0x00000005
0x80270: ©x0000025¢c 0x80270: ©x0000025¢ 0x80270: 0Ox0000025¢
0x80274: 0Ox00000003 Ox80274: ©x00000R03 0x80274: 0x00000003
0x80278: 0x00000204 0x80278: 0x00000204 0x80278: 0x00000204
0x8027c: 0x00000001 0x8027c: 0x00000001 0x8027c: 0x00000001
0x80280: 0x00000781 0x80280: 0Ox00000781 0x80280: 0x00000781

A. What line of assembly should be substituted into the blank line in the
arrayProd procedure above?

arrayProd:

lw tO, 0(a0)

1i a3, 1

beq al, a3, end

addi sp, sp, -8

sw ra, 0(sp)

sw t0, 4(sp)

SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4

addi a1, a1, -1

jal arrayProd

lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)
addi sp, sp, 8

end:

mv ad, to
ret

Sp
T allocates

Sp
deallocates

B1) What is the hexadecimal address of the instruction that originally calls
arrayProd?

B1) What is the hexadecimal address of the instruction that originally calls

arrayProd?
We know when arrayProd is initially called, ra == call instruction + 4

arrayProd:
lw t0, 0(a0)
1li a3, 1

beq al, a3, end i
asgiasp’asp,e?g On the initial run ra would be saved at the address
sw ra, 0(sp) / the stack pointer is at

sw t0, 4(sp)

SAMPLE POINT - prints ra, sp, a0, al, a part of the stack

addi a0, a0, 4

addi a1, a1, _1/ And a snapshot would be taken

jal arrayProd This means we should look at snapshot 2!
lw al, 4(sp)

jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)

addi sp, sp, 8
end:

mv aod, to

ret

B1) What is the hexadecimal address of the instruction that originally calls

arrayProd?

e We save ra to the stack multiple times, the first ra is the initial call arrayProd instruction + 4

#1 sp =0x00080280 ra =0x00000000 #2 sp =0x00080278 ra =0x00000204 #3 sp =0x00080270 ra =0x0000025C
a0 =0x00004000 al =0x0000EOO5 ad =0x00004000 al =0x00000005 a0 =0x00004004 al =0x00EO0004
Address: Data: Address: Data: Address: Data:
0x80258: Ox00Off3af Ox80258: Ox0PVOff3af 0x80258: 0Ox000ff3af
0x8025c: 0x00000018 0x8025c: 0x00000018 0x8025c: Ox00000018
0x80260: 0x0000035¢ 0x80260: 0x0000035¢ 0x80260: Ox0000035¢
0x80264: 0x00000011 0x80264: 0x00000011 0x80264: Ox00000011
0x80263: 0x00000008 Before call to | oxs0268: oxeeoee0es 0x80268: 0x00000008
0x8026¢: 0x00000001 0x8026¢: 0x00000001 0x8026C: 0x00000001
0x80270- oxooeoo3sc arrayProd 0x80270: 0x0000035¢ 0x80270: 0©x0000025¢C
0x80274: 0x00000011 0x80274: 0x00000011 0x80274: 0x00000003
0x80278: 0x00000808 —P 0x80278: 0x00000204 0x80278: 0x00000204
0x8027c: 0Ox0000a321 0x8027c: 0x00000001 0x8027c: 0x00000001
—p| 0x80280: 0x00000781 0x80280: 0x00000781 0x80280: 0x00000781
sw ra, 0(sp)
sw t0, 4(sp)

After the initial function call we save the first ra to the stack before the
2nd snapshot is taken before we enter jal arrayProd

SAMPLE POINT -
addi a0, a0, 4
addi al, al, -1
jal arrayProd

B1) What is the hexadecimal address of the instruction that originally calls
arrayProd?

=0x00000204
=0x00000005

e rais 0x00000204 #2 sp =0x00080278 ra
e Therefore, the address of the o0 -gxobondane al

original call is ra - 4
Ans: 0x00000200

Address:
0x80258:
Ox8025c:
0x80260:
0x80264 :
Ox80268:
Ox8026¢C:
Ox80270:
0x80274:
Ox80278:
Ox8027c:
0x80280:

Data:

Ox000ff3af
Ox00000018
Ox0000035c
Ox00000011
Ox00000008
Ox00000001
Ox0000035¢c
0x00000011
0x00000204
Ox00000001
Ox00000781

B2) What is the hexadecimal address of the instruction that is responsible
for the recursive calls to arrayProd?

B2) What is the hexadecimal address of the instruction that is responsible
for the recursive calls to arrayProd?

arrayProd:
lw tO, 0(a0)
1li a3, 1
beq al, a3, end
addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4
addi al, a1, -1
jal arrayProd <@——0—
lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)

addi sp, sp, 8
end:

mv a@, to

ret

B2) What is the hexadecimal address of the instruction that is responsible
for the recursive calls to arrayProd?

arrayProd:
lw tO, 0(a0)
1li a3, 1
beq al, a3, end
addi sp, sp, -8
sw ra, 0(sp) S———
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4

that address is saved over and over 2 instructions apart

addi al, al, -1 o o))) .
jal arrayProd <@ After the initial call, jal instruction calls arrayProd multiple times, and ra is

1w al, 4(sp) set to the same address (jal instruction address + 4) every time

jal mult # returns prouuct OT @o anu aI (SEE dppernuIx)

lw ra, 0(sp)

addi sp, sp, 8
end:

mv aod, to

ret

B2) What is the hexadecimal address of the instruction that is responsible

for the recursive calls to arrayProd?

e rais 0x0000025C (not initial ra), it is repeated throughout the stack 2
Instructions apart
e The recursive call will be ra - 4
o Ans: 0x00000258
#4 sp =0x00080268 ra =0x0000025C #5 sp =0x00080260 ra =0x0000025C #6 sp =0x00080280 ra =0x00000204
ad =0x00004008 al =0x00000003 ad =0x0000400C al =0x00000002 a0 =0x000000FO al =0x000VOO0
Address: Data: Address: Data: Address: Data:
0x80258: 0x000ff3af 0x80258: 0x000ff3af 0x80258: 0Ox000ff3af
0x8025c: ©x00000018 0x8025¢: ©x00000018 0x8025c: 0x00000018
0x80260: 0x0000035¢ 0x80260: ©x0000025c 0x80260: 0x0000025¢c
0x80264: 0x00000011 0x80264: ©x00000008 0x80264: 0x00000008
0x80268: ©x0000025¢ 0x80268: 0x0000025c¢ 0x80268: 0x0000025¢
0x8026C: ©x00000005 0x8026C: ©x00000005 0x8026¢c: 0Ox00000005
0x80270: 0x0000025¢ 0x80270: ©x0000025¢ 0x80270: 0x0000025¢c
0x80274: 0x00000003 0x80274: 0x00000003 0x80274: 0x00000003
0x80278: 0x00000204 0x80278: ©x00000204 0x80278: 0x00000204
0x8027c: 0x00000001 0x8027¢: ©x00000001 0x8027c: 0x00000001
0x80280: 0x00000781 0x80280: Ox00000781 0x80280: 0x00000781

B3) What is the hexadecimal address of the array a provided to the initial
call of arrayProd?

B3) What is the hexadecimal address of the array a provided to the initial
call of arrayProd?

arrayProd: a0 is passed into the initial call of arrayProd
lw to, 0(a@) «— Itis address of array a
11 @3, 1
beq al, a3, end Before arrayProd is called a0 needs to be loaded with the address of
addi sp, sp, -8 array a — let’s look at snapshot 1

sw ra, 0(sp)

sw t0, 4(sp)

SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4

addi al, al, -1

jal arrayProd

lw al, 4(sp)

jal mult # returns product of a@ and al (see appendix)

lw ra, 0(sp)

addi sp, sp, 8
end:

mv aod, to

ret

B3) What is the hexadecimal address of the array a provided to the initial
call of arrayProd? /

Look at arguments that #1 sp =0x000802é ra =0x00000000
D 4 tak . ad =0x00004000 al =0x00000005
arraybroadla e§ In Address: Data:
o uint32 t* aina0 0x80258: 0x0P00ff3af
o uint32 t b in a1 Ox8025c: Ox000O18
a is the pointer of the array 0x80260: 6x0000035c
_ Ox80264: Ox00000011
provided to arrayProd 0x80268: 0x00000008
o Apointer is a variable that stores the Ox8026c: Ox00000001
address of something in memory 0x80270: 0x0000035c
S h 1 sh th | f Ox80274: Ox00000011
napshot 1 shows us the value o Ox80278: Ox0000080S
a0 right before we first call 0x8027c: 0x0000a321
Ox80280: Ox000O781
arrayProd

B4) Specify a C array below that is identical to the one the user must have
handed into arrayProd.

B4) Specify a C array below that is identical to the one the user must have
handed into arrayProd.

arrayProd: Collects a[0]

1w to, 0(a0) 4

beq al, a3, end
addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4
addi al, a1, -1
jal arrayProd
lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

< Saves it to the stack after ra

44— 2-1issentas an argument to the recursive call

lw ra, 0(sp)

addi sp, sp, 8
end:

mv a@, to

ret

B4) Specify a C array below that is identical to the one the user must have

handed into arrayProd.

arrayProd: Collects a[0]

1w to, 0(a0) 4

L1 a8, 1 UNTIL we hit the base case of b == 1, we don’t save the
p) end/

beq al, a3

addi sp, sp, -8
sw ra, 0(sp)
sw t0, 4(sp)
SAMPLE POINT - prints ra, sp, a0, al, a part of the stack
addi a0, a0, 4
addi al, al, -1
jal arrayProd
lw al, 4(sp)
jal mult # returns product of a@ and al (see appendix)

a array

< Saves it to the stack after ra

44— 2-1issentas an argument to the recursive call

lw ra, 0(sp)

addi sp, sp, 8
end:

mv aod, to

ret

final value in the

B4) Specify a C array below that is identical to the one the user must have

handed into arrayProd.

b == 5 so we need 5 elements

We have — [1, 3, 5, 8, 7]

/
#1 sp =0x00080280 ra =0x00000000 / #2 sp =0x00080278 ra =0x00000204 #3 sp =0x00080270 ra =0x0000025C
ad =0x00004000 al =0x00000005 ad =0x00004000 al =0x00000005 ad =0x00004004 al =0x00000004
Address: Data: Address: Data: Address: Data:
0x80258: 0x000ff3af 0x80258: 0Ox000ff3af 0x80258: 0Ox000ff3af
Ox8025c: Ox00000018 0x8025c: 0x00000018 0x8025c: Ox00000018
0x80260: ©x0000035cC 0x80260: Ox0000035c 0x80260: Ox0000035cC
0x80264: 0x00000011 0x80264: 0x00000011 0x80264: 0x00000011
0x80268: 0x00000008 Before call to | ox8026s: oxeocoeoces 0x80268: 0Ox00000008
Ox8026c: Ox00000001 Ox8026c: 0x00000001 Ox8026c: Ox00000001
ox80270- oxeooeo3sc arrayProd 0x80270: ©x0000035C AXR0270: 0xAAAAP
Ox80274: 0x00000011 Ox80274: 0x00000011
0x80278: 0x00000808 —P 0x80278: 0x00000204 0x80278: 0x00000204
0x8027c: 0Ox0000a321 0x8027c: ©x00000001 0x8027c: 0x00000001
—p| Ox80280: 0x00000781 X T OX 0x80280: ©x00000781
#4 sp =0x00080268 ra =0x0000025C #5 sp =0x00080260 ra =0x0000025C #6 sp =0x00080280 ra =0x00000204
ad =0x00004008 al =0x00000003 ad =0x0000400C al =0x00000002 ab =0x000000FO al =0x00000000
Address: Data: Address: Data: Address: Data:
0x80258: 0x000ff3af 0x80258: Ox000ff3af 0x80258: 0x000ff3af
Ox8025c: Ox00000018 Ox8025c: Ox00VLV18 Ox8025c: Ox00000018
Ox80260: 0x0000035c —Ppt 0x80260: Ox0000025c 0x80260: 0x0000025c
0x80264: 9x00000011 0x80264: 0Ox00000008
—P 0x80268: Ox0000025¢ 0 0x80268: 0x0000025c
0x8026C: 0x00000005 0x8026c: 0x00000005
Ox8027/0: 0x0000025C 0x80270: Ox0000025c 0x80270: 0Ox0000025c
0x80274: 0Ox00000003 Ox80274: ©x00000R03 0x80274: 0x00000003
0x80278: 0x00000204 0x80278: 0x00000204 0x80278: 0x00000204
0x8027c: 0Ox00000001 0x8027c: 0x00000001 0x8027c: 0x00000001
Ox80280: OxP0VRR781 0x80280: Ox00000781 0x80280: Ox000VO781

B4) Specify a C array below that is identical to the one the user must have

handed into arrayProd.

In the last snapshot sp is back in the original
position.

At the end of the arrayProd function we have:

addi sp, sp, 8
end:

mv a@, to

ret

We reset the stack pointer and then move the
answer into a0.

If the stack pointer is in its original position we
have completed the function. If the function is
complete the final product is in a0

#6 sp
ao

Address:
Ox80258:
Ox8025c:
0x80260:
Ox80264 :
Ox80268:
Ox8026¢C:
0x80270:
Ox80274 :
0x80278:
Ox8027c:

—4r@x80286:

=0x00080280 ra
=0x000000F0 al

Data:

Ox000ff3af
0x00000018
0x0000025c¢
0x00000008
0x0000025c
0x00000005
0x0000025c¢
0x00000003
0x00000204
0x00000001
0x00000781

=0x00000204
=0x00000000

B4) Specify a C array below that is identical to the one the user must have

handed into arrayProd.

In the last snapshot sp is back in the original
position.

At the end of the arrayProd function we have:

addi sp, sp, 8
end:

mv a@, to

ret

We reset the stack pointer and then move the
answer into a0.

If the stack pointer is in its original position we
have completed the function. If the function is
complete the final product is in a0

#6 sp

=0x00080280

ra

ad

=0x000000F0

al

Address:
Ox80258:
Ox8025c:
0x80260:
Ox80264 :
Ox80268:
Ox8026¢C:
0x80270:
Ox80274 :
0x80278:
Ox8027c:

—4r@x80280:

Data:

Ox000ff3af
0x00000018
0x0000025c¢
0x00000008
0x0000025c
0x00000005
0x0000025c¢
0x00000003
0x00000204
Ox00000001
0x00000781

=0x00000204
=0x00000000

e OxOF0 =240 = 1*3*5*8*777?

o =2

e Thearrayis { 1,

3,

5, 8, 2}

B4) Specify a C array below that is identical to the one the user must have

handed into arrayProd.

Let’s look at the last snapshot for
values added in the stack

o {1, 3, 5, 8 } coupledwith ra’s
Notice that the value in a0 is the
result of multiplying each element
in the array

From the first snapshot, a1l was 5

o al corresponds to the length of the
array

OxO0F0 =240 = 1*3*5*8*7?7?7

o ?77=2
Thearrayis { 1, 3, 5, 8, 2

#6 sp
ao

Address:
0x80258:
Ox8025c:
0x80260:
0x80264 :
0x80268:
Ox8026¢C:
0x80270:
0x80274:
0x80278:
Ox8027c:
0x80280:

=0x00080280 ra
=0x000000F0 al

Data:

Ox000ff3af
Ox00000018
0x0000025c
Ox00000008
Ox0000025c¢
Ox00000005
Ox0000025¢
Ox00000003
0x00000204
0x00000001
Ox00000781

=0x00000204
=0x00000000

