
6.S077 Spring 2022 - 1 of 19 - Quiz 1

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.S077: Introduction to Low-level Programming in C and Assembly

Spring 2022

Name
Anne Surs

Athena login name
answers

Score
100

Please enter your name and Athena login name above. Enter your answers in the spaces provided below.
Show your work for potential partial credit. You can use the extra white space and the backs of the pages for
scratch work.

Problem 1. Binary Arithmetic (15 Points)

(A) (2 points) What is (0x4B & 0xF3) ^ 0x2D, where & is bitwise AND and ^ is bitwise XOR? Provide your

result in both binary and hexadecimal.

Result in binary (0b):________ 0110_1110 ________

Result in hexadecimal (0x):________6E______________

(B) (3 points) What is 19 in 8-bit 2’s complement notation? What is –25 in 8-bit 2’s complement notation?

Show how to compute 19–25 using 2’s complement addition. What is the result in 8-bit 2’s complement
notation?

19 in 8-bit 2’s complement notation (0b):_____0001_0011__________

–25 in 8-bit 2’s complement notation (0b):_____1110_0111___________

19–25 in 8-bit 2’s complement notation (show your work) (0b):______1111_1010__________

(C) (2 points) What range of numbers encoded using two’s complement representation can be expressed using 6

bits? Provide your answer in decimal.

Smallest 6-bit two’s complement number (in decimal):_______-32________

Largest 6-bit two’s complement number (in decimal):______31_________

1 15/15
2 17/17
3 10/10
4 18/18
5 17/17
6 8/8
7 15/15

6.S077 Spring 2022 - 2 of 19 - Quiz 1

(D) (2 points) What range of numbers encoded using unsigned binary representation can be expressed using 6
bits? Provide your answer in decimal.

Smallest 6-bit unsigned binary number (in decimal):______0_________

Largest 6-bit unsigned binary number (in decimal):______63_________

(E) (2 points) Multiply 9 by 5 using unsigned binary numbers. Show all of your work by filling in the missing

rows in the table below and provide your final answer in 8-bit two’s complement notation.

0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
 1 0 0 1
 0 0 0 0 0
 1 0 0 1 0 0
 0 0 0 0 0 0 0
0 0 1 0 1 1 0 1

9 x 5 (0b):__0010_1101_____________

(F) (2 Points) Translate the number 6.25 to 32-bit binary floating point representation. Then convert your

answer to hexadecimal. Show your work.

6.25 = 110.01 = 1.1001 * 2^2
Sign = 0
Mantissa = 2 + 127 = 129 = 0b1000_0001
Fraction = 1001
0_10000001_10010000000000000000000
0100_0000_1100_1000_0000_0000_0000_0000

6.25 in binary floating point representation (0b):_0100_0000_1100_1000_0000_0000_0000_0000__

6.25 in binary floating point representation (0x):__40C80000_____________

(G) (2 points) Given an unknown binary number with digits ghijk, where each of g, h, i, j, and k could be a 0

or a 1, determine the two intermediate bitwise operations that should be performed on this number in order to
end up with the result g1i0k. In other words, clear bit 1 and set bit 3 and leave the other bits unchanged.
For each intermediate operation, specify both the operator and the value of the second operand (e.g., xor
11111).

First bitwise operation to perform on ghijk:____| 0b01000________________

Second bitwise operation (performed on result of first operation):___ & 0b11101 _______________

6.S077 Spring 2022 - 3 of 19 - Quiz 1

Problem 2. (17 points) C structs

A struct called Pixel is defined below to represent the RGB (red, green, blue) color values of a pixel in an
image.

struct Pixel{
 uint8_t r; //red value
 uint8_t g; //green value
 uint8_t b; //blue value
};

(A) (2 points) How many unique colors can be represented by this struct?

2^24. 24 bits of possibility

(B) (4 points) The luminance (perceived brightness) of a RGB value is based on the following expression:

! = 0.299 ∙ (+ 0.587 ∙ - + 0.114 ∙ 0

Where (, -, and 0 are color values (meaning maximum red corresponds to (= 255 and minimal red
corresponds to (= 0). Luminance ! will range from 0 to 255.0 as a result.

Write a function getLuminance that takes in a single Pixel struct p by value and returns the Luminance (a
value ranging from 0 to 255.0)

float getLuminance(struct Pixel p){

 return 0.2126*p.r + 0.7152*p.g + 0.0722*p.b;

}

 	

return 0.299 * p.r + 0.587 * p.g + 0.114 * p.b;

6.S077 Spring 2022 - 4 of 19 - Quiz 1

(C) (5 points) The equation in part B requires (or should have required…retroactive hint) floating point
calculations and those can be slower to compute. In the interest of speed, sometimes compromises are made
in calculating luminance and the following equation can be a good approximation:

! = 0.375 ∙ (+ 0.5 ∙ - + 0.125 ∙ 0

Taking advantage of this, write a modified getLuminance that takes in a single Pixel struct p by
value and returns the Luminance that is mapped over a one byte unsigned value (ranging from 0 to 255).
Your function is only allowed to use addition, subtraction, and shift operators.

Hint: Think about how you can make these fractions with powers of 2.

uint8_t getLuminance(struct Pixel p){

 return (p.r)>>2+(p.r)>>3 + (p.g)>>1 + (p.b)>>3;

}

6.S077 Spring 2022 - 5 of 19 - Quiz 1

(D) (6 points) Consider a case where somebody makes an array of 100 pixels:

struct Pixel picture[100];

We proceed to “load” an image into this 100 pixel image by calling some function loadPicture on this
array so that it now contains the pixel information for all 100 pixels in that image.

loadPicture(picture);

Create a function defined below that takes in an array of Pixel structs as well as the length of the array and
returns a struct Pixel representing the average red, green, and blue values in the image:

struct Pixel getAverageColor(struct Pixel* p, int len);

You can use any integer arithmetic operations for this function.

struct Pixel getAverageColor(struct Pixel* p, int len){

 struct Pixel new;
 uint32_t red = 0;
 uint32_t green = 0;
 uint32_t blue = 0;
 for (int i= 0; i<len; i++){
 red += p->r;
 green += p->g;
 blue += p->b;
 p++;
 }
 new.r = red/len;
 new.g = green/len;
 new.b = blue/len;
 return new;

}

6.S077 Spring 2022 - 6 of 19 - Quiz 1

Problem 3. (10 points) Mystery Functions

Consider the following two functions, the second being a slight variation of the first: An ASCII table is provided
to you for reference.

#include<stdlib.h>
#include<stdio.h>

void mysteryFunc(const char* si, char* so){
 char* sr = si;
 char* ss = si;
 char* st = so;
 while(*sr != '\0'){
 sr++;
 }
 *(sr-si+so) = 0;
 sr--;
 while(sr != ss){
 *so = *sr;
 so++;
 sr--;
 }
 *so = *sr;
}

void mysteryFunc2(const char* si, char* so){
 char* sr = si;
 char* ss = si;
 char* st = so;
 while(*sr != '0'){ //changed!
 sr++;
 }
 *(sr-si+so) = 0;
 sr--;
 while(sr != ss){
 *so = (*sr)-1; //changed!
 so++;
 sr--;
 }
 *so = (*sr)-1; //changed!
}

Study these functions and determine what they do. Consider the test code on the following page:

6.S077 Spring 2022 - 7 of 19 - Quiz 1

 char c[] = "6.0004";
 char d[100];

 mysteryFunc(c,d);
 printf("%s\n",d); //Print 1!

 mysteryFunc2(c,d);
 printf("%s\n",d); //Print 2!

Determine what will get printed on the lines denoted Print 1! and Print 2!.

What gets printed at Print 1!

4000.6

What gets printed at Print 2!

-5

6.S077 Spring 2022 - 8 of 19 - Quiz 1

Problem 4. (18 points) More Pointers

Consider the four functions written below:

#include<stdio.h>
#include<stdlib.h>

int* A(int* a){
 return a+1;
}
int* B(int* a){
 return a-1;
}
void E(int* a, int* b){
 int* d = b;
 b = a;
 a = d;
}
void F(int* a, int* b){
 int d = *b;
 *b = *a;
 *a = d;
}

For each of the following code segments, specify the value of arrays x and y at the line indicated by:
 // LINE #.

(A) (3 points) @LINE 1:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};
 int* c;
 int* d;
 c = A(A(x));
 *c = 3;
 // LINE 1
}

x[] = {0,1,3,3,4}

y[] = { 9,8,7,6,5}

6.S077 Spring 2022 - 9 of 19 - Quiz 1

(B) (3 points) @LINE 2:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};
 int* c;
 int* d;
 c = x + 2;
 d = A(B(c));
 d = 2(*d);
 // LINE 2
}

x[] = { 0,1,4,3,4}

y[] = { 9,8,7,6,5}

(C) (3 points) @LINE 3:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};
 int* c = x;
 int* d = y+2;
 E(c,d);
 // LINE 3
}

x[] = { 0,1,2,3,4}

y[] = { 9,8,7,6,5}

6.S077 Spring 2022 - 10 of 19 - Quiz 1

(D) (3 points) @LINE 4:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};
 int* c = x;
 int* d = y;

 *A(c) = *A(d)+6;
 // LINE 4
}

x[] = { 0,14,2,3,4}

y[] = { 9,8,7,6,5}

(E) (3 points) @LINE 5:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};

 *B(y+3) = *(B(y+2))*2;
 // LINE 5
}

x[] = { 0,1,2,3,4}

y[] = { 9,8,16,6,5 }

6.S077 Spring 2022 - 11 of 19 - Quiz 1

(F) (3 points) @LINE 6:

const int LEN = 5;
int main(){
 int x[LEN] = {0,1,2,3,4};
 int y[LEN] = {9,8,7,6,5};

 F(A(x),A(A(y)));
 // LINE 6
}

x[] = { 0,7,2,3,4}

y[] = { 9,8,1,6,5}

6.S077 Spring 2022 - 12 of 19 - Quiz 1

Problem 5. RISC-V Assembly (17 points)

(A) (3 points) What is the hexadecimal encoding of the instruction	sw t1, -8(t3)? You can use the template

below to help you with the encoding. Please show your work for partial credit.	

8 = 0000_0000_1000
-8 = 1111_1111_0111 + 1 = 1111_1111_1000
rs2 = t1 = x6 = 0b00110
rs1 = t3 = x28 = 0b11100
funct3 = 010
opcode = 0100011
1111_1110_0110_1110_0010_1100_0010_0011

 sw t1, -8(t3) instruction encoding (0x):____FE6E2C23________________

For each of the following code snippets, provide the value left in each register after executing the entire code
snippet (i.e., when the processor reaches the instruction at the end label), or specify CAN’T TELL if it is
impossible to tell the value of a particular register. The code snippets are independent of each other.

(B) (3 points)	

code_start:
 li x1, 0x23
 lui x2, 0x28
 blt x2, x1, L1
 addi x1, x1, 1
L1:
 add x1, x1, zero
end:

x1: (0x) ____24___________________

x2: (0x) ____28000___________________

pc: (0x) _____CAN’T TELL__________________

[31:25] [24:20] [19:15] [14:12] [11:7] [6:0]
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

6.S077 Spring 2022 - 13 of 19 - Quiz 1

(C) (4 points)	
 . = 0x100
 li x4, 0x55
 slli x5, x4, 3
 xor x4, x4, x5
 addi x6, zero, -2
end:

x4: (0x) ______2FD________________

x5: (0x) _____2A8_________________

x6: (0x) ___FFFFFFFE____________

pc: (0x) _____110_________________

(D) (3 points)	

 . = 0x100
 addi x7, zero, 0x414
 li x8, 5
 lw x9, -4(x7)
 sw x8, 4(x7)
end:

. = 0x410
.word 0x01010101
.word 0xAAAAAAAA
.word 0x77777777

	
 x9: (0x) _____01010101___________

Which address in memory is written to: (0x) _______418_______________

What value is written to memory: (0x) ______5________________

6.S077 Spring 2022 - 14 of 19 - Quiz 1

(E) (4 points) Translate the following C code to RISC-V assembly. Assume x is in register a1, y is in register a2,

and z is in register a3. Only use a registers in your answer.	
for (int i = 0; i < 10; i++) {
 x = x << 7;
 y = y | 0x55555;
 z = x - 3;
}

 li a0, 0
 li a4, 10
 li a5, 0x55555
loop:
 bge a0, a4, end
 slli a1, a1, 7
 or a2, a2, a5
 addi a3, a1, -3
 addi a0, a0, 1
 j loop
end:

6.S077 Spring 2022 - 15 of 19 - Quiz 1

Problem 6. RISC-V Calling Convention (8 points)

Brian and Dennis have decided to branch out from C and write a program using RISC-V assembly language.
Brian has written and tested a single assembly procedure, is_zero, shown below, that works as expected.
However, things go awry when he writes a function, count_zeros, that calls is_zero as shown below.
Dennis suggests that Brian may not be following RISC-V calling convention. Brian agrees.

Brian’s Code:

Inputs:
(1) value to compare to zero

is_zero:
 beq a0, zero, set
 li a0, 0
 j end
set:
 li a0, 1
end:
 ret

Brian’s Code:

count_zeros arguments:
(1) base address of array
(2) array length

count_zeros:
 li s0, 0
 li t0, 0
loop:
 slli t1, s0, 2
 add t1, t1, a0
 lw a0, 0(t1)
 jal is_zero
 add t0, t0, a0
 addi s0, s0, 1
 blt s0, a1, loop
end:
 mv a0, t0
 ret

6.S077 Spring 2022 - 16 of 19 - Quiz 1

Please add appropriate instructions into the blank spaces on the right, below, to make count_zeros follow
calling convention. If the procedure already follows calling convention, write NO INSTRUCTIONS
NEEDED. For full credit, you should only save registers that must be saved onto the stack and avoid
unnecessary loads and stores.

You can assume that the program will work correctly if it follows calling convention. Do not remove or
modify any of the original instructions. Also assume that is_zero works as expected and follows calling
convention.

Brian’s Code (repeated):

count_zeros arguments:
(1) base address of array
(2) array length

count_zeros:
 li s0, 0
 li t0, 0
loop:
 slli t1, s0, 2
 add t1, t1, a0
 lw a0, 0(t1)
 jal is_zero
 add t0, t0, a0
 addi s0, s0, 1
 blt s0, a1, loop
end:
 mv a0, t0
 ret

Answer:

count_zeros:
 addi sp, sp, -20
 sw ra, 0(sp)
 sw s0, 4(sp)
 sw a0, 8(sp)
 sw a1, 12(sp)

 li s0, 0
 li t0, 0

loop:

 slli t1, s0, 2

 lw a0, 8(sp)

 add t1, t1, a0

 lw a0, 0(t1)

 sw t0, 16(sp)
 jal is_zero
 lw t0, 16(sp)

6.S077 Spring 2022 - 17 of 19 - Quiz 1

Brian’s Code (repeated):

count_zeros arguments:
(1) base address of array
(2) array length

count_zeros:
 li s0, 0
 li t0, 0
loop:
 slli t1, s0, 2
 add t1, t1, a0
 lw a0, 0(t1)
 jal is_zero
 add t0, t0, a0
 addi s0, s0, 1
 blt s0, a1, loop
end:
 mv a0, t0
 ret

(continued on next page)

 add t0, t0, a0

 addi s0, s0, 1

 lw a1, 12(sp)

 blt s0, a1, loop

end:

 mv a0, t0

 lw ra, 0(sp)
 lw s0, 4(sp)
 addi sp, sp, 20
 ret

6.S077 Spring 2022 - 18 of 19 - Quiz 1

Problem 7. Stack Detective (15 points)

The following C program computes the sum of all elements in an array. The corresponding assembly program is
shown on the right.

int arraySum(int* a, int b){
 // int *a: pointer to array
 // int b: length of array
 if (b == 1) return a[0];
 else {
 return a[0] + arraySum(a+1, b-1);
 }
 }

(A) (1 point) What RISC-V assembly instruction should go in the blank

line in order to make the assembly implementation match the C
program?

Instruction: ___add a1, a1, -1____________

The program’s initial call to arraySum is made
from outside of the function. arraySum is
interrupted during a recursive call, just prior to
the execution of mv a0, a2. The diagram to
the right shows the contents of the stack at this
point in time.

(B) (8 points) What are the (hexadecimal) values of the following variables at the time of the initial call to

arraySum? Write “CAN’T TELL” if you cannot tell a value from the information provided.

Initial value of a: ____CAN’T TELL_______

Initial value of *a: ____3______________

Initial value of a[1]: ____6______________

Initial value of b: ____5______________

 0x78
 0x7
SP ® 0x3c
 0x2
 0x3c
 0x1
 0x3c
 0x6
 0x7324
 0x3
 0x7828

arraySum:
 lw a2, 0(a0)
 li a3, 1
 beq a1, a3, end

 addi sp, sp, -8
 sw ra, 0(sp)
 sw a2, 4(sp)
 addi a0, a0, 4

 jal arraySum
 lw a2, 4(sp)
 add a2, a2, a0
 lw ra, 0(sp)
 addi sp, sp, 8

 end:
 mv a0, a2
 ret

6.S077 Spring 2022 - 19 of 19 - Quiz 1

(C) (4 points) What are the (hexadecimal) values in the following registers when the program is halted? Write
“CAN’T TELL” if you cannot tell a value from the information provided.

 Current value of ra (0x): ____3C___________

Current value of a2 (0x): ____CAN’T TELL___________

(D) (2 points) What is the hexedecimal address of the “call arraySum” instruction that made the initial call to
arraySum?

Address of initial call (0x): ___0x7320_____________

END OF QUIZ!

