
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.S077: Introduction to Low-level Programming in C and Assembly

Spring 2023, Quarter 1

Name: Kerberos:

MIT ID #:

#1 (15)

#2 (6)

#3 (10)

#4 (24)

#5 (10)

#6 (12)

#7 (15)

#8 (8)

Total (100)

Exam content is on both sides of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

6.S077 Spring 2023 Q1 - 1 of 23 - Exam

This page intentionally left blank

6.S077 Spring 2023 Q1 - 2 of 23 - Exam

Problem 1. Give a Little Bit (15 points)

A. (2 points) Consider this code:

uint8_t a = 0x56;
uint8_t b = 0b10101010;
uint8_t c = 3;

Given the variable initializations above, evaluate (a && b) | c. Provide your answer in both unsigned
8-bit binary and decimal encodings.

Unsigned 8-bit binary (0b):

Decimal:

B. (2 points) Convert 16 to 8-bit two’s complement binary and hexadecimal encoding:

8 bit two’s complement binary (0b):

8 bit two’s complement hexadecimal (0x):

C. (2 points) Convert -16 to 8-bit two’s complement binary and hexadecimal encoding:

8 bit two’s complement binary (0b):

8 bit two’s complement hexadecimal (0x):

6.S077 Spring 2023 Q1 - 3 of 23 - Exam

D. (2 points): An 8-bit C variable contains the value 0xE0. What would the decimal value be if the
variable was a uint8_t? An int8_t?

uint8_t decimal value:

int8_t decimal value:

E. (2 points): Consider this code:

int8_t y = 0x7;
int8_t z = 0b10000001;

Evaluate the two operations and provide the resulting value in decimal form:

y << 2 (in decimal):

z >> 1 (in decimal):

6.S077 Spring 2023 Q1 - 4 of 23 - Exam

F. (2 Points) Consider this code:

int8_t x = 0xEF;
int8_t y = 0x1A;
int8_t z = x+y;

uint8_t a = 250;
uint8_t b = 7;
uint8_t c = a+b;

After this code executes, what are the decimal values of z and c?

Value of z (in decimal):

Value of c (in decimal):

G. (3 Points)What is the 32-bit floating point representation of the number -128.0? The format of 32-bit
floating point encoding is shown below. Show your work for full credit. Note that the number shown in
the figure is not -128.0.

32 bit floating point representation of -128.0. Provide your answer in hexadecimal:

6.S077 Spring 2023 Q1 - 5 of 23 - Exam

Problem 2. Who Loves the Sum (6 points)

You are writing a function that computes the sum of the given array. Here is what you have so far.

// Computes the sum in the given array

// x: address of the first int in the array

// n: array length

int compute_sum(int* x, const unsigned int n) {

int* y = x;

int sum = 0;

while (__BLANK 1__) {

sum += __BLANK 2__;

y += __BLANK 3__;

}

return sum;

}

Fill in the blanks (using the table below) to complete the implementation.

Please note that you may not alter n because the variable is declared with the const (constant) keyword.

BLANK 1: BLANK 2: BLANK 3:

6.S077 Spring 2023 Q1 - 6 of 23 - Exam

Problem 3: Hex’s & Oh’s (10 points)
The nth hexagonal number can be calculated via the following formula:

ℎ
𝑛

= 2𝑛 × (2𝑛 − 1)
2

Please write an assembly procedure, hexagonal, that calculates the nth hexagonal number using the
formula above. Its C declaration is: int hexagonal(int n);. It should obey the RISC-V calling
convention and return to its caller once it’s done. Solutions that make unnecessary memory accesses will
not be given full credit.

You have access to an additional instruction, mul, that performs integer multiplication. However, it is
very slow so you may only use it once. The RISC-V ISA describes mul as:

Inst. Syntax Description Execution

MUL mul rd, rs1, rs2 Integer multiplication reg[rd] ← (reg[rs1] * reg[rs2])[31:0]

In other words, it performs 32 bit * 32 bit multiplication and places the lower 32 bits of the product in rd.
For this problem, we do not need to handle the case where the product is more than 32 bits. The encoding
of mul is as follows:

A. (8 points) Please write your implementation of hexagonal in the box below.

hexagonal:

B. (2 points) How much space in memory (in bytes) does your implementation of hexagonal take up?

Number of bytes occupied by your hexagonal instructions:

6.S077 Spring 2023 Q1 - 7 of 23 - Exam

Problem 4. Money, Money, Money (24 points)
A procedure is written in RISC-V assembly that calculates the composition of quarters (25 cents), dimes
(10 cents), nickels (5 cents), and pennies (1 cent) needed to represent a certain amount of money specified
in cents. The C definition is:

void makeChange(int amount, int* change_array);
● int amount: The amount of money (in US cents) to analyze
● int* change_array: An array used as the function’s output. It lists the number of quarters,

dimes, nickels, and pennies, at indices 0, 1, 2, and 3, respectively.

1 makeChange:
2 addi sp, sp, -4
3 sw ra, 0(sp)
4 quarter:
5 addi t0, zero, 25
6 bgt t0, a0, dime
7 lw t1, 0(a1)
8 addi t1, t1, 1
9 sw t1, 0(a1)
10 addi a0, a0, -25
11 call makeChange
12 j done
13 dime:
14 addi t0, zero, 10
15 bgt t0, a0, nickel
16 lw t1, 4(a1)
17 addi t1, t1, 1
18 sw t1, 4(a1)
19 addi a0, a0, -10
20 call makeChange
21 j done
22 nickel:
23 addi t0, zero, 5
24 bgt t0, a0, penny
25 lw t1, 8(a1)
26 addi t1, t1, 1
27 sw t1, 8(a1)
28 addi a0, a0, -5
29 call makeChange
30 j done
31 penny:
32 addi t0, zero, 1
33 bgt t0, a0, done
34 lw t1, 12(a1)
35 addi t1, t1, 1
36 sw t1, 12(a1)
37 addi a0, a0, -1
38 call makeChange
39 j done
40 done:
41 lw ra, 0(sp)
42 addi sp, sp, 4
43 ret

6.S077 Spring 2023 Q1 - 8 of 23 - Exam

The procedure is run. You are not given the value for amount, and change_array is an array that starts
with zeroed-out elements. Eight coins are dispensed.

You obtain a stack trace from immediately after the procedure is run:

Address: Value:
0x3fc93ef4: 0x420000e8
0x3fc93ef8: 0x3c020184
0x3fc93efc: 0x3fc93ef8
0x3fc93f00: 0x3fc93ef8
0x3fc93f04: 0x00000001
0x3fc93f08: 0x3fc91000
0x3fc93f0c: 0x00000000
0x3fc93f10: 0x42004e2c
0x3fc93f14: 0x00000002
0x3fc93f18: 0x000000a3
0x3fc93f1c: 0x420000a7
0x3fc93f20: 0x4200002c
0x3fc93f24: 0x4200002c
0x3fc93f28: 0x420000ec
0x3fc93f2c: 0x420000a8
0x3fc93f30: 0x420000a8
0x3fc93f34: 0x420000a8
0x3fc93f38: 0x420000a8
0x3fc93f3c: 0x42000068
0x3fc93f40: 0x42000068
0x3fc93f44: 0x42000048
0x3fc93f48: 0x42000048
0x3fc93f4c: 0x4200012c
0x3fc93f50: 0x00000003
0x3fc93f54: 0x00000002
0x3fc93f58: 0x00000000
0x3fc93f5c: 0x00000003

Answer the following questions –

A. (2 points)What is the value of the stack pointer (sp) at the time of the snapshot above?

B. (2 points)What is the address of the instruction that makes the initial call to makeChange?

6.S077 Spring 2023 Q1 - 9 of 23 - Exam

C. (4 points)What are the final values in change_array after the call to makeChange?

D. (1 point)What is the value of input variable amount in the call to makeChange?

E. (5 points)What is the 32 bit value in memory address 0x42000080? Specify in binary or in
hexadecimal.

F. (10 points) Next, the following code is run (sp starts at 0x3fc93f40):

//int arrays coins_1 and coins_2 previously declared
for (int i=0; i<4; i++){
coins_1[i] = 0;
coins_2[i] = 0;

}
//time point 1
makeChange(52,coins_1); //corresponding call executed when pc=0x42004e18
//time point 2
makeChange(16,coins_2); //corresponding call executed when pc=0x42004e24
//time point 3

The values in a certain portion of memory are shown at time point 1. On the next page, fill in the
values at time point 2 and time point 3.

Leave the cell blank if the values are unchanged from the values at time point 1.

6.S077 Spring 2023 Q1 - 10 of 23 - Exam

Address time point 1 time point 2 time point 3

0x3fc93f04 0x00000001

0x3fc93f08 0x3fc91000

0x3fc93f0c 0x00000000

0x3fc93f10 0x42004e2c

0x3fc93f14 0x00000000

0x3fc93f18 0x00000000

0x3fc93f1c 0x00000000

0x3fc93f20 0x00000000

0x3fc93f24 0x0000002a

0x3fc93f28 0x00000111

0x3fc93f2c 0xa0a0a0a0

0x3fc93f30 0x0000008a

0x3fc93f34 0x0000008a

0x3fc93f38 0x42004e6a

0x3fc93f3c 0x42004e6a

0x3fc93f40 0x00000000

0x3fc93f44 0x00000001

0x3fc93f48 0x00000004

0x3fc93f4c 0x00000003

0x3fc93f50 0x420165ac

0x3fc93f54 0x420165b0

0x3fc93f58 0x12004e2c

0x3fc93f5c 0x00000000

6.S077 Spring 2023 Q1 - 11 of 23 - Exam

Problem 5: COPYCAT (12 points)
Belly Eyelash is writing an assembly program that she can use to retrieve information from different
sources.

Part of this program is a procedure, arr_copy, that copies the values of an input array into an output
array. It uses one other procedure, copy. Belly does not have access to the C or assembly
implementations of copy, but she can assume that it works as expected and follows the RISC-V calling
convention.

arr_copy copy

Arguments:
1. int *src – pointer to input array
2. int *dest – pointer to destination array
3. int length – length of source array

Copies all length elements in the input array
(src) into another array (dest).

Returns nothing

Arguments:
1. int *src – pointer to input array
2. int *dest – pointer to destination array
3. int idx – index of element to copy

Copies src[idx] into dest[idx]

Returns nothing

She uses a working C implementation of arr_copy for reference.

Working C Implementation Belly’s Assembly Implementation

1 void arr_copy(int *src, int *dest,

2 int length) {

3 int i = 0;

4 while (i < length) {

5 copy(src, dest, i);

6 i++;

7 }

8 }

1 arr_copy:

2 li s0, 0

3 mv s1, a2

4 j compare

5 loop:

6 mv a2, s0

7 call copy

8 addi s0, s0, 1

9 compare:

10 blt s0, s1, loop

11 ret

The code compiles, however, it runs into some issues at run-time. Please answer the questions on the
following page.

6.S077 Spring 2023 Q1 - 12 of 23 - Exam

Please provide a short explanation for the following run-time behaviors. The entire assembly program
works as expected when she uses the C implementation of arr_copy rather than her assembly version,
so she has narrowed down the root cause to her assembly implementation of arr_copy.

A. (4 points) Belly’s processor crashes due to an instruction accessing a memory address that it is not
allowed to. This occurs at the instruction lw s0, 0(a0) within the copy procedure. She already used a
debugger to verify that the correct arguments were passed into arr_copy.

Explanation:

B. (4 points) Belly observes that her program gets trapped in an infinite loop within arr_copy. She
already used a debugger to verify that the correct arguments were passed into arr_copy.

Explanation:

C. (4 points) Belly’s processor crashes (again) due to an instruction accessing a memory address that it is
not allowed to. This time, it occurs after arr_copy returns back to its caller procedure, at the instruction
lw t1, 0(s1). She already used a debugger to verify that arr_copy wrote to the destination array as
expected.

Explanation:

6.S077 Spring 2023 Q1 - 13 of 23 - Exam

Problem 6. Lights on Broadway (10 points)
As you remember from the labs and postlabs, our lab kit’s display is an array of LEDs that we8 × 32
control through a length-8 uint32_t array. You can assume the zeroth bit of the zeroth array element
corresponds with the upper right corner of the display. We’d like to make a border-scrolling LED pattern
where a single illuminated LED traces the entire border in a clockwise fashion, like shown below:

Your friend started implementing a function, chasingBorder, that takes in a pointer to the screen array,
sb, and based on the array’s state, updates it to the next appropriate value in the border animation.
Complete the function so that each call to the function chasingBorder moves the illuminated LED one
spot in the clockwise direction. You can assume the LEDs are already following this border-scrolling
pattern when chasingBorder is called. You should not use any helper functions from lab.

Unfortunately, you spilled boba on your keyboard, disabling the '[' and ']' keys, so you can’t
use them in your code. Fill in the ten blanks in the code below using the table on the next page.

void chasingBorder(uint32_t* sb){
if(___________BLANK 1__________){
//move right
_________BLANK 2_________;
return;

} else {
//move down
for(int i = 0; i < 7; i++){
if (__________BLANK 3_________){
____________BLANK 4________;
____________BLANK 5________;
return;

}
}

}
if (__________BLANK 6_________){
//move left
____________BLANK 7_________;
return;

} else {
//move up
for(int i = 0; i < 7; i++){
if (_________BLANK 8__________){
___________BLANK 9_________;
___________BLANK 10________;
return;

}
}

}
}

6.S077 Spring 2023 Q1 - 14 of 23 - Exam

Blank #: Line of Code:

BLANK 1

BLANK 2

BLANK 3

BLANK 4

BLANK 5

BLANK 6

BLANK 7

BLANK 8

BLANK 9

BLANK 10

6.S077 Spring 2023 Q1 - 15 of 23 - Exam

Problem 7. MM..FOOD (15 Points)

We’re in charge of managing a BurgerTime franchise which serves meals that look like this:

struct Meal{
uint16_t burger;
uint8_t fries;

};

We are going to focus on the burgers. Each burger contains only four possible ingredients: patties, cheese,
tomatoes, and pickles. A burger is represented by a uint16_t that uses four bits to represent the count of
each ingredient, so each burger can contain up to 15 units of each ingredient.

Ingredient Pickles Tomatoes Cheese Slices Patties

Burger bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A. (7 points) Due to popular demand, corporate has requested a function that can quickly remove pickles
from a meal’s burger. Write a function removePickles that takes in a pointer to a Meal struct, removes
the pickles in the burger, and returns how many pickles were removed .

uint8_t removePickles(struct Meal *m){

}

6.S077 Spring 2023 Q1 - 16 of 23 - Exam

B. (8 points) Someone called in sick, and now it's on you to manage one of the stations.

Write a function called stationOne that adds patty_num patties, and tomato_num tomato slices to a
meal’s burger. You can assume the meal has no patties or tomato slices before the function is called.

void stationOne(struct Meal *m, uint8_t patty_num, uint8_t tomato_num){

}

6.S077 Spring 2023 Q1 - 17 of 23 - Exam

Problem 8. The End (8 points)

Read through the following functions so that you understand what they do. An ASCII table is provided to
you for reference in the exam Appendix. Assume that a char acts like an unsigned 8 bit integer.

#include <stdio.h>

void mystery1(char input) {
for(int i=7; i>=0; i--) {

printf("%d", (input >> i) & 1);
}
printf("\n");

}

char mystery2(char input) {
input = ((0b11110000 & input) >> 4) | ((0b00001111 & input) << 4);
input = ((0b11001100 & input) >> 2) | ((0b00110011 & input) << 2);
input = ((0b10101010 & input) >> 1) | ((0b01010101 & input) << 1);
return input & 0b11111111;

}

A. (4 points) Consider the test code below:
char input1 = 0b11001100;

mystery1(input1); // PRINT A

What will be printed by the line indicated by PRINT A?

B. (4 points) Consider the test code below:
char input2 = 'G';

mystery1(mystery2(input2)); // PRINT B

What will be printed by the line indicated by PRINT B?

6.S077 Spring 2023 Q1 - 18 of 23 - Exam

This page intentionally left blank

6.S077 Spring 2023 Q1 - 19 of 23 - Exam

This page intentionally left blank

6.S077 Spring 2023 Q1 - 20 of 23 - Exam

Appendix 1: String functions

char *strcat(char *dest, const char *src) - appends the string pointed to by src to the end
of the string pointed to by dest. This function returns a pointer to the resulting string dest.

char *strncat(char *dest, const char *src, size_t n) - appends the string pointed to by
src to the end of the string pointed to by dest up to n characters long. This function returns a pointer to
the resulting string dest.

char *strcpy(char *dest, const char *src) - copies the string pointed to, by src to dest.
This returns a pointer to the destination string dest.

char *strncpy(char *dest, const char *src, size_t n) - copies up to n characters from
the string pointed to, by src to dest. In a case where the length of src is less than that of n, the
remainder of dest will be padded with null bytes. This function returns the pointer to the copied string.

int strcmp(const char *str1, const char *str2) - compares the string pointed to, by str1
to the string pointed to by str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

int strncmp(const char *str1, const char *str2, size_t n) - compares at most the first
n bytes of str1 and str2. This function return values that are as follows −

● if Return value < 0 then it indicates str1 is less than str2.

● if Return value > 0 then it indicates str2 is less than str1.

● if Return value = 0 then it indicates str1 is equal to str2.

char *strchr(const char *str, int c) - searches for the first occurrence of the character c (an
unsigned char) in the string pointed to by the argument str. This returns a pointer to the first
occurrence of the character c in the string str, or NULL if the character is not found.

char *strrchr(const char *str, int c) - searches for the last occurrence of the character c
(an unsigned char) in the string pointed to, by the argument str. This function returns a pointer to
the last occurrence of character in str. If the value is not found, the function returns a null pointer.

char *strstr(const char *haystack, const char *needle) - function finds the first
occurrence of the substring needle in the string haystack. The terminating '\0' characters are not
compared. This function returns a pointer to the first occurrence in haystack of any of the entire
sequence of characters specified in needle, or a null pointer if the sequence is not present in haystack.

char *strtok(char *str, const char *delim) - breaks string str into a series of tokens using
the delimiter delim. This function returns a pointer to the first token found in the string. A null pointer is
returned if there are no tokens left to retrieve.

6.S077 Spring 2023 Q1 - 21 of 23 - Exam

Appendix 2: ASCII Table

6.S077 Spring 2023 Q1 - 22 of 23 - Exam

Appendix 3: C Operator Precedence

Precedence Operator Description Associativity
1 ++ -- Suffix/postfix increment and decrement Left-to-right

() Function call
[] Array subscripting
. Structure and union member access
-> Structure and union member access through pointer

2 ++ -- Prefix increment and decrement Right-to-left
+ - Unary plus and minus
! ~ Logical NOT and bitwise NOT
(type) Cast
* Indirection (dereference)
& Address-of

3 * / % Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= For relational operators < and ≤ respectively

> >= For relational operators > and ≥ respectively
7 == != For relational = and ≠ respectively
8 & Bitwise AND
9 ^ Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 || Logical OR
13 ?: Ternary conditional Right-to-left
14 = Simple assignment

+= -= Assignment by sum and difference
*= /= %= Assignment by product, quotient, and remainder
<<= >>= Assignment by bitwise left shift and right shift
&= ^= |= Assignment by bitwise AND, XOR, and OR

6.S077 Spring 2023 Q1 - 23 of 23 - Exam

