
1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1904: Introduction to Low-Level Programming in C and Assembly

Spring 2024, Quarter 4

Name:

Solutions

Kerberos:

MIT ID #:

#1 (12)

#2 (15)

#3 (16)

#4 (6)

#5 (14)

#6 (15)

#7 (14)

#8 (8)

Total (100)

Exam content is on both sides of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

IMPORTANT: Avoid talking about and communicating the contents of this exam with other
students until we have announced it is ok to do so on Piazza.  Failure to do so will be considered an
academic policy violation.

6.1904 Spring 2024 Q4 - 1 of 21 - Exam



This page intentionally left blank

6.1904 Spring 2024 Q4 - 2 of 21 - Exam



Problem 1. Operator (That’s Not the Way it Feels) (12 points)

Consider the code below.

uint8_t u1 = 0x0E;
uint8_t u2 = 90;
uint8_t u3 = u1 & u2;
uint8_t u4 = u1 - u2;
uint8_t u5 = u1 * u2;
uint8_t u6 = u1 / u2;
uint8_t u7 = u1 | u2;
uint8_t u8 = u1 ^ u2;

Specify (in hexadecimal) the value of each variable after the code runs:

u3 0x0A

u4 0xB4

u5 0xEC

u6 0x00

u7 0x5E

u8 0x54

6.1904 Spring 2024 Q4 - 3 of 21 - Exam



Problem 2. Fractious Fractions (15 points)

You decide to use 32 bits to represent fractions. One bit is used to represent the sign, 15 bits are used to
represent the numerator as an unsigned integer, and 15 bits are used to represent the denominator as an
unsigned integer. One bit is left-over and is unused.

The fraction shown in the example encoding below corresponds to + 1
2

For this problem you can ignore cases where the denominator is 0, and you can also assume all numbers
will stay within their assigned bits (don’t worry about overflow). Answer the following questions:

A. (2 points) What is the largest positive number that can be represented?

2**15-1

B. (2 points) What is the smallest non-zero positive number that can be represented?

1/(2**15-1)

C. (2 points) Encode . Specify your answer in hexadecimal:− 13
31

0x800D003E

6.1904 Spring 2024 Q4 - 4 of 21 - Exam



D. (2 points) Using only the following operators: ( |,&,^,~,<<,>>,>,<,>=,<= ) write a function that
takes in a 32 bit data type encoding a fraction as specified on the previous page and returns a negative of
the input fraction. For example, if the input fraction is -½ it returns ½. if/else and ternary operations
are not allowed.

uint32_t negateFraction(uint32_t a){

return a^0x80000000;

}

E. (7 points) Using only the following operators: ( |,&,^,~,<<,>>,*,/, >,<,>=,<= ) write a
function that takes in two 32 bit data types encoding two fractions as specified on the previous page and
returns their product also in the same fraction form. if/else and ternary operations are not allowed.
Do not simplify the numerator and denominator of your result. You can assume the components of
both input arguments are small enough to avoid concerns about overflow in the resulting fraction.

uint32_t multiplyFraction(uint32_t a, uint32_t b){

uint32_t as = a&0x80000000;
uint32_t bs = b&0x80000000;
uint32_t s = as^bs;
uint32_t da = (a & 0xFFFE)>>1;
uint32_t db = (b & 0xFFFE)>>1;
uint32_t d = da*db;
uint32_t na = (a>>16)&0x7FFF;
uint32_t nb = (b>>16)&0x7FFF;
uint32_t n = na*nb;
return s | (n<<16) | (d<<1);

}

6.1904 Spring 2024 Q4 - 5 of 21 - Exam



Problem 3: RISC-Vy Behavior (16 points)

For each of the code snippets below, specify what value ends up in each of the listed registers and memory
locations after the code snippet is run to completion.

A. (4 points) Assume that all registers are initialized to 0.

addi a1, zero, 0x34
lui a1, 5
addi a2, a1, 0x803
li a3, 36
xori a4, a3, 0x55

Resulting value in hexadecimal:

a1 = 0x5000

a2 = 0x4803

a3 = 0x24

a4 = 0x71

B. (4 points) Assume that all registers are initialized to 0.

. = 0x0
addi a1, zero, 11
addi a2, zero, 0x10
blt a2, a1, here
srli a3, a2, 3
jal a4, there
and a4, a4, a4

. = 0x100
here:

addi a4, a4, 7

. = 0x200
there:

xori a2, a2, 0x33

Resulting value in hexadecimal:

a1 = 0xB

a2 = 0x23

a3 = 0x2

a4 = 0x14

6.1904 Spring 2024 Q4 - 6 of 21 - Exam



C. (6 points) Assume that all registers are initialized to 0.

addi a1, zero, 0x10

loop:

bgt a2, a1, end

addi a2, a2, 4

srli a1, a1, 1

lw a3, 0x504(a2)

slli a4, a3, 4

sw a4, 0x500(a2)

jal x0, loop

. = 0x500

.word 0x12345678

.word 0xDEADBEEF

.word 0x50505050

.word 0x77773333

.word 0x12345678

end:

Resulting value in hexadecimal:

a1 = 0x4

a2 = 0x8

Mem[0x500] 0x12345678

Mem[0x504] 0x05050500

Mem[0x508] 0x77733330

Mem[0x50C] 0x77773333

D. (2 points) What instruction is encoded by the 32 bit value 0x2096A823?

Encoded Instruction: 0x2096A823 Decoded Instruction: sw x9, 0x210(x13)
sw s1, 0x210(a3)

6.1904 Spring 2024 Q4 - 7 of 21 - Exam



Problem 4: Stringing You Along (6 points)

Your best friend, Charlotte Starr has this weird string code she’s been handed, and she wants your help
figuring out what’s going on. Based on the information given, answer the following questions about the
output of the code. Recall that if the delimiter string includes multiple characters, then each character
is a valid delimiter.

char str[200] = "an interesting string, with A weird catch.";
str[3] = 0;
printf("0x%x\n", (int) str); // prints 0x2000
char* out = strtok(str + 5, str);
while(out != NULL) {

printf("%s\n", out); // print statement A
printf("0x%x\n", (int) out); // print statement B
out = strtok(NULL, str);

}

Fill in the following table with the outputs of each print statement each time the loop is executed. You
may not need to fill all rows of the table.

Loop # Output of print statement A Output of print statement B

1 teresti 0x2005

2 g 0x200D

3 stri 0x200F

4 g, 0x2014

5 with 0x2017

6 A 0x201C

7 weird 0x201E

8 c 0x2024

9 tch. 0x2026

10

11

12

6.1904 Spring 2024 Q4 - 8 of 21 - Exam



Problem 5: To Save Or Not To Save (14 points)

A. (8 points) Translate the C function operations into RISC-V assembly. The RISC-V func_x and
func_y functions are predefined and follow calling convention. Full credit will be awarded to
implementations that (1) follow calling convention and (2) utilize no more than 8 bytes of stack space.

// operations C function

int operations (int* a){
return func_y(func_x(a, *a), *(a+1));

}

# your RISC-V implementation

operations:
addi sp, sp, -8

sw ra, 0(sp)

sw a0, 4(sp)

lw a1, 0(a0)

call func_x

lw t0, 4(sp)

lw a1, 4(t0)

call func_y

lw ra, 0(sp)

addi sp, sp, 8

ret

6.1904 Spring 2024 Q4 - 9 of 21 - Exam



B. (6 points) We have given you an implementation of save_identifier that is almost correct.
Specifically, the logic is correct, but it does not follow RISC-V calling convention. Fixing the calling
convention (and changing nothing else) will make the procedure work as expected.

Your task is to add instructions to save_identifier so that it follows RISC-V calling convention.
Specifically, you may only add instructions that:

● Increment/decrement the stack pointer
● Put elements on the stack
● Read elements from the stack.

You may only write 1 instruction per line.  You also do not have to fill every line. Full credit will be
awarded to answers that minimize the number of instructions added. Do not use pseudo-instructions.

# save_identifier has no arguments or return values

save_identifier:

addi t1, x0, -4
add ra, ra, t1
lw s0, 0(ra)
andi s0, s0, 0x40
lui t1, 0x60004
sw s0, 0(t1)
jalr x0, 4(ra)

6.1904 Spring 2024 Q4 - 10 of 21 - Exam



save_identifier:

________________________

________________________

addi t1, x0, -4

________________________

________________________

add ra, ra, t1

addi sp, sp, -4_________

sw s0, 0(sp)____________

lw s0, 0(ra)

________________________

________________________

andi s0, s0, 0x40

________________________

________________________
lui t1, 0x60004

________________________

________________________

sw s0, 0(t1)

lw s0, 0(sp)____________

addi sp, sp, 4__________

jalr x0, 4(ra)

6.1904 Spring 2024 Q4 - 11 of 21 - Exam



Problem 6. Fast Exponentiation (15 points)

The simplest way to compute , for non-negative integers and , would be multiplying𝑎𝑛 𝑎 𝑛
, resulting in total multiplications.𝑎 × 𝑎 ×  𝑎 ...  𝑛 𝑡𝑖𝑚𝑒𝑠 𝑛 − 1

A faster way is to do it recursively as follows:

1. If is even, first find and then square it. .𝑛 𝑎𝑛/2 𝑎𝑛 =  (𝑎𝑛/2)2

2. If is odd, first find , square it and multiply it by . .𝑛 𝑎(𝑛−1)/2 𝑎 𝑎𝑛 =  𝑎 ×  (𝑎(𝑛−1)/2)2

In this way, we group several smaller powers into one value and square it, saving a lot of multiplications.

Here is a C implementation of the function fastPow that takes in two integers a and n and finds an
using the methodology described above.

1  int fastPow(int a, int n) {

2     if(n == 0){

3         return 1;

4     }

5     int res = fastPow(a, n / 2);

6     res = res * res;

7     if(n % 2 == 1){

8       res = a * res;

9     }

10    return res;

11 }

In RISC-V, this function has the equivalent implementation shown on the following page.  Note that we
also need a mult procedure to perform the multiplication between two numbers as we do not have an
instruction for it in RV32I from class. We have not provided the implementation for simplicity but you can
assume that mult does not store anything on the stack, nor does it modify the stack pointer.
Here is a C declaration for this function.

int mult(int a, int b); // returns a * b

6.1904 Spring 2024 Q4 - 12 of 21 - Exam



fastPow:

bne a1, x0, fp_body

addi a0, x0, 1

jalr x0, 0(ra)

fp_body:

addi sp, sp, -12

sw ra, 0(sp)

sw a0, 4(sp)

sw s0, 8(sp)

___BLANK__

srli a1, a1, 1

jal ra, fastPow

addi a1, a0, 0

jal ra, mult         # compute res*res

beq s0, x0, fp_done

lw a1, 4(sp)

jal ra, mult         # compute a*res

fp_done:

lw ra, 0(sp)

lw s0, 8(sp)

addi sp, sp, 12

jalr x0, 0(ra)

A. (2 points) Complete the blank in the assembly code with the correct RISC-V instruction. Hint: this
instruction will be related to line 7 in the equivalent C code.

andi s0, a1, 1

6.1904 Spring 2024 Q4 - 13 of 21 - Exam



fastPow is run to find the 26th power of an unknown number (i.e. n = 26 for the initial call to
fastPow.) Execution was halted just before a call to mult. We get the following snapshot of registers a0
and a1 as well as a relevant portion of the stack.We also know that sp is between 0x31480 and
0x314ff.

Again, as a reminder, the mult function does not modify the stack or the stack pointer at all.

a0 =0x00000040, a1 =0x00000040
Address: Data:

...

...
0x31478: 0x00003420
0x3147c: 0x00000002
0x31480: 0x00000000
0x31484: 0x00003420
0x31488: 0x00000002
0x3148c: 0x00000001
0x31490: 0x00003420
0x31494: 0x00000002
0x31498: 0x00000000
0x3149c: 0x0000723c
0x314a0: 0x00000002
0x314a4: 0x00000000
0x314a8: 0x12010fff
0x314ac: 0x12951a7f

B. (2 points) What is the address of the label fp_done?

0x3434

C. (1 point) What is the value of the argument a (base of the exponent) to the initial call to fastPow?

a = 0x2

D. (4 points) Knowing that n = 26 for the initial call to fastPow, what is the value stored in register
sp at the moment the execution was halted? If you cannot determine this value, write CAN'T TELL.

sp = 0x31490

6.1904 Spring 2024 Q4 - 14 of 21 - Exam



E. (6 points) We have reproduced the stack shown on the last page and added a few blanks. Fill in the
values stored in the stack at the given memory addresses. If you cannot determine the value, write CAN'T
TELL.

Address Data

0x31460 CAN'T TELL

0x31464 CAN'T TELL

0x31468 CAN'T TELL

0x3146c 0x00003420

0x31470 0x00000002

0x31474 0x00000001

0x31478 0x00003420

0x3147c 0x00000002

0x31480 0x00000000

0x31484 0x00003420

0x31488 0x00000002

0x3148c 0x00000001

0x31490 0x00003420

0x31494 0x00000002

0x31498 0x00000000

0x3149c 0x0000723c

0x314a0 0x00000002

0x314a4 0x00000000

0x314a8 0x12010fff

0x314ac 0x12951a7f

6.1904 Spring 2024 Q4 - 15 of 21 - Exam



Problem 7. Listicles (14 points)

Your friend is tasked with writing a list data structure listicle.h that wraps the C array and adds
helper functions, to try to emulate a Python list. Defining a variable of type struct list produces a
struct with the following elements:

struct list {
int array[15]; // can store up to 15 items
int size;

};

A. (4 points) The following functions are already implemented: list_append, which appends one
integer to the end of the array, and list_extend, which adds the contents of one list to the end of
another. Here are their function signatures.

void list_append(struct list * original, int new_value);
void list_extend(struct list * original, struct list * new_values);

Your friend wants you to test these functions out, and challenges you to use these two functions to
complete the code below. Fill in the blank lines with function calls in order to give the intended output.

#include <stdio.h>
#include "listicle.h"
void main() {

struct list a;
struct list b;
a.size = 0;
b.size = 0;
for (int i = 0; i < 5; i++) {

__BLANK 1__
__BLANK 2__

}
for (int j = 0; j < a.size; j++) {

printf("%d ", a.array[j]);
}

}

Intended output: 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5

BLANK 1: list_append(&b, i+1);

BLANK 2: list_extend(&a, &b);

6.1904 Spring 2024 Q4 - 16 of 21 - Exam



B. (4 points) Later, your friend comes up with the list_insert function, which can insert a value
right in front of a particular index i.

// inserts new_value IN FRONT OF original.array[index]
// this makes new_value the new original.array[index]
void list_insert(struct list * original, int index, int new_value);

Assuming that the function keeps size correct, and that the compiler does not do any padding for
structures, specify the value of each variable listed in the table below after the following is run.
Leave a box blank if it is not possible to know.

#include <stdio.h>
#include "listicle.h"
void main() {

struct list c;
c.size = 0;
for (int i = 0; i < 5; i++) {

list_insert(&c, i/2, i);
}

}

Variable Value

c.array[0] 1

c.array[1] 3

c.array[2] 4

c.array[3] 2

c.array[4] 0

c.array[5]

c.array[6]

c.size 5

6.1904 Spring 2024 Q4 - 17 of 21 - Exam



C. (6 points) It’s 4am. Your friend is getting tired. Please help them write list_remove, which removes
the first occurrence of value in the list. If a list d represents [3, 1, 4, 1, 5], calling
list_remove(&d, 1) should change what the list represents to [3, 4, 1, 5]. Other requirements
include:

● If value cannot be found in original, the list stays unchanged
● The list size must be updated

void list_remove(struct list * original, int value) {

// solution 1

for (int i = 0; i < original->size; i++) {

if (original->array[i] == value) {

for (int j = i; j < original->size - 1; j++) {

original->array[j] = original->array[j+1];

}

original->size--;

return;

}

}

// solution 2

int index = –1;

for (int i = 0; i < original->size; i++) {

if (original->array[i] == value) {

index = i;

break;

}

}

if (index != -1) {

for (int i = index; i < original->size; i++) {

original->array[i] = original->array[i+1];

}

original->size -= 1;

}

// solution 3 below, there are many other correct solutions as well!

int found = 0;

for (int i = 0; i < original->size; i++) {

if (original->array[i] == value) found = 1;

if (found) original->array[i] = original->array[i+1];

}

if (found) original->size = original->size - 1;

}

6.1904 Spring 2024 Q4 - 18 of 21 - Exam



This page intentionally left blank

6.1904 Spring 2024 Q4 - 19 of 21 - Exam



Problem 8: Faster Snake (8 points)

In lab 3, updating the snake required copying the entire body of the snake at every update. This is
inefficient. To address this, Ben created a new Snake struct. In this representation, the active segments of
the snake are no longer anchored at body[0] with the head implied at body[0]. Instead, the beginning of
the snake is now represented by an index stored in the variable head.

The diagram below shows this new snake representation, where the length is 6 and the head is at index 6.

Updating the position of the entire snake now requires only writing one new location and updating the
head, regardless of the length of the snake, meaning the code will run much more consistently at any
length.  The updated snake shown below continues to have a length of 6, but the index of head is now 7.

Help Ben appropriately complete the updateSnake function to correctly accommodate the new Snake
struct.  For reference, the function signatures used by updateSnake are provided here:

uint8_t getX(uint8_t location);
uint8_t getY(uint8_t location);
void setX(uint8_t *location, uint8_t new_x);
void setY(uint8_t *location, uint8_t new_y);

6.1904 Spring 2024 Q4 - 20 of 21 - Exam

// Snake struct definition
struct Snake {

uint8_t body[256];
uint8_t direction;
uint8_t length;
uint8_t head;

};



void updateSnake(struct Snake *snake) {
/* Function to update the snake on each step based on its direction
Arguments:

struct Snake *snake: pointer to snake struct
*/
uint8_t head = snake->body[snake->head];
uint8_t x = getX(head); //extract x value from head location
uint8_t y = getY(head); //extract y value from head location
if (snake->direction == up) {

y--;
y &= 0b111;  //same as % 8

} else if (snake->direction == down) {
y++;
y &= 0b111;  //same as % 8

} else if (snake->direction == left) {
x++;
x &= 0b11111; //same as % 32

} else if (snake->direction == right) {
x--;
x &= 0b11111; //same as % 32

}
snake->head = __BLANK1__;

setX(__BLANK2__, x); //update x portion of location reference
setY(__BLANK2__, y); //update y portion of location reference

}

Complete the new implementation of updateSnake() by providing a correct line of code for both
BLANK1 and BLANK2.

Blank #: Line of Code:

BLANK1 snake->head + 1

BLANK2 snake->body + snake->head

6.1904 Spring 2024 Q4 - 21 of 21 - Exam


