MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1900: Introduction to Low-level Programming in C and Assembly

Spring 2023, Quarter 4

Name: Kerberos:

MIT ID #:

#1 (15)

#2 (9)

#3 (15)

#4 (15)

#5 (22)

#6 (12)

#7 (12)

Total (100)

Exam content is on both sides of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

6.1900 Spring 2023 Q4 -1of23- Exam

This page intentionally left blank

6.1900 Spring 2023 Q4 -20f23- Exam

Problem 1. Commit to the Bit (15 points)

A. (2 points) For each expression below, write an equivalent expression using bitwise operators. Assume
x and y are type uint8_t. (You may only use the following operators: | , & , ~ , ~ , << ,
>>. Do not use == or !=in your answer.)

while ((x/8) !=y); while()s

if (x [(y*2)) i)

B. (2 points) Convert the decimal number 12 to 8-bit two’s complement binary and hexadecimal
encoding. You must indicate all 8 bits.

8-bit two’s complement binary (0b):

8-bit two’s complement hexadecimal (0x):

C. (2 points) Convert the decimal number -12 to 8-bit two’s complement binary and hexadecimal
encoding. You must indicate all 8 bits.

8-bit two’s complement binary (0b):

8-bit two’s complement hexadecimal (0x):

6.1900 Spring 2023 Q4 -30f23- Exam

D. (2 points) Consider this code:

uint8_t a = 0x5;
uint8 t b = OxA;
uint8 t ¢ = a-b;
int8 t d = 0x80;
int8 t e = d>>1;

After this code executes, what are the values of ¢ and e? Your answer should be in decimal encoding.

Value of ¢ (in decimal):

Value of e (in decimal):

E. (3 points) What is the 32-bit floating point representation of the number -64.5? The format of 32-bit

floating point encoding is shown below. Show your work for full credit. Note that the number shown in
the figure may not be -64.5.

sign exponent (8 bits) fraction (23 bits)
| | Il
010|0f0|0|Of0O|0OfOJ0O|0|0|Of0O|0|0O|0O|0O|0|0|0O|0|0O|0|0f0|0|0O|0O|0O(0O|0O
L * o L
31 30 23 22 (bit index) 0

Value = (—1)sien.2exp=127. (1 4 323 p,. .2-1)

32 bit floating point representation of -64.5. Provide your answer in hexadecimal:

6.1900 Spring 2023 Q4 -4 of 23 - Exam

F. (4 points) The following is the 32-bit binary floating point representation of -38.25:

Obl_10000100_00110010000000000000000

Write the floating point representation of the value 38.25 in hexadecimal:

Write the floating point representation of the value -153.0 in hexadecimal:

6.1900 Spring 2023 Q4 -50f23- Exam

Problem 2. Set It and Forget It (9 points)

As you remember from the labs and postlabs, our lab kit’s display is an 8 X 32 array of LEDs that we
control through a length-8 uint32_t array. You can assume the zeroth bit of the zeroth array element
corresponds with the upper right corner of the display. Your friend has written a function, setPixel,
that takes in a game board, an x-coordinate, a y-coordinate and a value to set the pixel to (1 for on, 0 for

off).

They started the function but left it incomplete. Without using the'[' and ']"' keys, complete the
code:

1 void setPixel(uint32 _t* gb, int8 t x, int8 t y, int8 t val){
2 if (__BLANK 1_){
3 __BLANK 2__ = _ BLANK 3__;
4 }else{
5 _ BLANK 4 = BLANK 5_;
6 }
7}

Blank #: Line of Code:

BLANK 1

BLANK 2

BLANK 3

BLANK 4

BLANK 5

6.1900 Spring 2023 Q4 -60f23 - Exam

Problem 3. strTiK strToK (15 points)

Study the function and determine what it does. An ASCII table is provided in the Appendix.

1
2

22
23
24
25

#include <stdio.h>
#include <string.h>

void mystery(char* in, int index, char* out, int out_size) {
char* tok = strtok(in, "-");
while(tok != NULL && index > @) {
index--;
tok = strtok(NULL, "-");
¥
if (index == 0@ && tok != NULL) {
for(int i=3; i»>=0; i--) {
if (out_size > 1) {
*out = 48 + (((*tok) >> (i * 2)) & 3);
out ++;
out_size --;
}
}
*out = 9;
out_size --;
tok ++;
strncat(out, tok, out_size);
¥
}

A. (6 points) Consider the test code below:

char in[] = "strs-chars-ints-floats";
int index = 0;
char out[100] = "";

int out_size = 100;

mystery(in, index, out, out_size);

printf("%s", out);

// PRINT A

Determine what will get printed by the line PRINT A
What gets printed from PRINT A

6.1900 Spring 2023 Q4

-7 0f23 -

Exam

Program reproduced from the previous page for reference.

1 #include <stdio.h>
2 #include <string.h>

3
4 void mystery(char* in, int index, char* out, int out_size) {
5 char* tok = strtok(in, "-");
6 while(tok != NULL && index > 0) {
7 index--;
8 tok = strtok(NULL, "-");
9 }
10
11 if (index == @ && tok != NULL) {
12 for(int i=3; i»=0; i--) {
13 if (out_size > 1) {
14 *out = 48 + (((*tok) >»> (i * 2)) & 3);
15 out ++;
16 out_size --;
17 }
18 }
19 *out = 9;
20 out_size --;
21
22 tok ++;
23 strncat(out, tok, out_size);
24 }
25 }
B. (3 points) Consider the test code below:
char in[] = "strs-chars-ints-floats";
int index = 0;
char out[100] = "";

int out_size = 6; // << Changed here

mystery(in, index, out, out_size);
printf("%s", out); // PRINT B

Determine what will get printed by the line PRINT B
What gets printed from PRINT B

6.1900 Spring 2023 Q4 -80f23 - Exam

C. (6 points) Consider the test code below:

char in[] = "strs-chars-ints-floats";
int index = 2; // << Changed here
char out[100] = "";

int out_size = 100; // << Changed here

mystery(in, index, out, out _size);
printf("%s", out); // PRINT C

Determine what will get printed by the line PRINT C
What gets printed from PRINT C

6.1900 Spring 2023 Q4 -90f23 - Exam

Problem 4. The Things We Take at MIT (15 points)

An MIT class can be separated into two parts:
e Department number: The number associated with the department offering the class. For
example, any class offered by the MIT EECS department will have a department number of 6.
You may assume all departments are represented numerically (don’t worry about STS or 21A).
e Subject number: A number used to identify each class within a department. For example, the
class 6.190 has a subject number of 190. The class 20.190 also has a subject number of 190. You
may assume all subjects are represented numerically (no 6.UAT here).

The registrar encodes each MIT class as a 32-bit value, where:
e The upper 8 bits represent the department number.
e The lower 16 bits represent the subject number.
e The remaining 8 bits in the middle are unused, so we do not know or care about their values.

This encoding is shown in the table below. Note: X means that we don 't care about the value of the bit.

number[31:0] number[31:24] number[23:16] number[15:0]
MIT Class Department Number Unused Bits Subject Number
6.101 0bo0000110 ObXXXXXXXX 0b0000000V1100101
18.06 0b00010010 ObXXXXXXXX 0b00000VVV00LV110
NULL 51e1515151515155]%] ObXXXXXXXX 0b000000RVV0RV0o

A. (5 points) Write a function getDept that takes in one argument:
e uint32_t mit_class: an MIT class number

getDept should return the number of the department that offers the class represented by mit_class .
For example, if mit_class is representing 18.06, getDept should return 18.

int8_t getDept(uint32_t mit_class){

6.1900 Spring 2023 Q4 - 10 0f 23 - Exam

The registrar uses a struct, deptCatalog, to store all of the classes currently offered by a given
department. It is shown below:

#include <stdint.h>

#define MAX_CLASSES 65536

struct deptCatalog{
uint8_t dept; // department number
uint32_t num_classes; // number of classes offered by the department
uint32_t mit_classes[MAX_CLASSES]; // array of MIT classes

}s

The first num_classes elements of mit_classes contains every active class, encoded as described in
the previous part, offered by the department, dept. You may not assume these classes are stored in any
particular order.

For the remainder of the problem, assume a deptCatalog struct named courseé6 is defined, where:
e dept ==
e 0 <= num_classes < MAX_CLASSES

B. (5 points) Write a function, classExists. It takes 2 arguments:

e deptCatalog *dc: A pointer to a department catalog struct.
e uintl6_t subject_number: The subject number, as previously defined, of interest. Note that
this is not the same as an MIT class.

Ex: To check that 6.101 is in the Course 6 catalog, you would call classExists(&course6, 101).

classExists should return a 1 if a class with subject_number is present in a given department’s
catalog, dc. Otherwise, it should return ©.

int classExists(struct deptCatalog *dc, uintl6_t subject number){

6.1900 Spring 2023 Q4 - 11 of 23 - Exam

C. (5 points) Write a function, addClass, that has two arguments:

e deptCatalog *dc: A pointer to a department catalog struct, as previously defined.
e uintl6_t new_subject: The subject number, as previously defined, to add to the department.

addClass should first check if the department already offers a class with the subject number
new_subject. If it does not, addClass should add a class with that subject number to the department
struct. Specifically, it should:

e Place the new class number (containing both the department number and subject number) at the
lowest unoccupied address in the mit_classes array.
e Update the number of classes offered by the department.

Ex: To add 6.190 to the Course 6 department catalog, you’d call addClass(&course6, 190).
You may assume that a correct implementation of classExists from Part B is available to use.

void addClass(struct deptCatalog *dc, uintl6_t new_subject){

6.1900 Spring 2023 Q4 - 12 0f 23 - Exam

Problem 5. Logs (22 points)

Computing log2 (x) is readily achievable on a digital computer due to the inherent base 2 nature of the
underlying binary representation. Computing logarithms of an arbitrary base of the form loga(x) is not so

easy, however. There is a workaround, though! We can use the change of base logarithm formula:

log, ()

log (x) = ———
g a () lO gb (a)

with b = 2. Therefore, to compute a logarithm of an arbitrary base for an integer, you just need to be

able to:

1. Calculate the log-base-2 of a number
2. Divide.

These operations are implemented by two RISC-V assembly procedures, 11log2 and idiv. In addition, a

higher-level procedure, named 1log_a_x is created and utilizes 11og2 and idiv as discussed above. The
source code for these three procedures is shown on the next page.

6.1900 Spring 2023 Q4 - 13 0f23 - Exam

The following line of code is run. At various points throughout the program (denoted TIME POINT X),
the values in certain memory locations and registers are saved. Some of these values are shown in the
table on the next page. Using the code below and those values, fill in the missing cells in the table.

jal ra, log a_x # C---mmmmm- TIME POINT @ (after this line is executed)
1 ilog2: # produce ilog2 of a@
2 addi sp, sp, -4

3 sw ra, 0(sp)

4 addi t1, zero, 1

5 blt t1, a0, ilog_else

6 addi ao@, zero, ©

7 beq zero, zero, ilog ret

8 ilog_else:

9 srli a0, a0, 1

106 jal ra, ilog2

11 addi a0, a0, 1

12 ilog _ret:

13 1w ra, 9(sp)

14 addi sp, sp, 4

15 jalr zero, @(ra)

16

17 idiv: #produce idiv of a@/al
18 addi sp, sp, -4

19 sw ra, 9(sp)

20 addi t1, zero, ©

21 bge a0, al, idiv_else

22 addi a@, zero, ©

23 beq zero, zero, idiv_ret
24 idiv_else:

25 sub a@, a0, al

26 jal ra, idiv

27 addi a0, a0, 1

28 idiv_ret:

29 1w ra, 0(sp)

30 addi sp, sp, 4

31 jalr zero, ©(ra)

32

33 log_a_x: #compute the log of a@ in base al

34 addi sp, sp, -12

35 sw ra, 0(sp)

36 sw s@, 4(sp)

37 sw sl, 8(sp)

38 add s@, a0, zero # <--------- TIME POINT 1 (after line 38 executed)
39 addi a0, al, ©

40 jal ra, ilog2

41 addi s1, a0, ©

42 addi a@, so, 0 # <-----m--- TIME POINT 2 (after line 42 executed)
43 jal ra, ilog2

44 addi al, si, ©

45 jal ra, idiv

46 1w s1, 8(sp) # 0 <----mm--- TIME POINT 3 (after line 46 executed)
47 1w s@, 4(sp)

48 1w ra, 9(sp)

49 addi sp, sp, 12

50 jalr zero, O(ra) # <--------- TIME POINT 4 (after line 50 executed)

6.1900 Spring 2023 Q4 - 14 0of 23 - Exam

Complete this table for Problem 5, using the code on the previous page.

Address TIME POINT © | TIME POINT 1 | TIME POINT 2 | TIME POINT 3 | TIME POINT 4
0x3fc93f00 oxffffffff oxffffffff oxffffffff Oxffffffff Oxffffffff
ox3fc93fo4 Oxa5a5a5a5 Oxa5a5a5a5 Oxa5a5a5a5 0x42001620 0x42001620
0x3fc93f08 Oxa5a5a5a5 Oxa5a5a5a5 Oxa5a5a5a5 0x42001620 0x42001620
Ox3fc93foc 0x00000004 0x00000004 0x00000004 0x42001620 0x42001620
ox3fc93f10 0x000007c2 0x000007c2 0x000007c2 0x42001620 0x42001620
ox3fc93f14 0x00000123 0x00000123 0x00000123 0x42001650 0x42001650
ox3fc93f18 oxffffffff oxffffffff 0x42001620 0x42001650 0x42001650
ox3fc93fic 0x00000123 0x00000123 0x42001620 0x42001650 0x42001650
ox3fc93f20 0x420165bo 0x420165bo 0x4200167c 0x42001690 0x42001690
ox3fc93f24 0x3fc91000 0x4201540a 0x4201540a 0x4201540a 0x4201540a
ox3fc93f28 0x3fc91000 0x0000000f 0x0000000f 0x0000000f 0x0000000f
ox3fc93f2c 0x00000011 0x00000001 0x00000001 0x00000001 0x00000001
0x3fc93f30 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000
ox3fc93f34 0x00000111 0x00000111 0x00000111 0x00000111 0x00000111

Register TIME POINT © | TIME POINT 1 | TIME POINT 2 | TIME POINT 3 | TIME POINT 4

a0 0x0000008a 0x0000008a

al 0x00000005 0x00000005 0x00000005
SO 0x0000000f

sl 0x00000001 0x00000001

ra 0x4201540a 0x4201540a

t1 0x0000000a 0x0000000a

sp 0x3fc93f30

6.1900 Spring 2023 Q4 -150f23 - Exam

Problem 6: RISC-Y Business (12 points)
Please convert the following C expressions into equivalent RISC-V assembly language instructions. Full

credit will be given for correct solutions that minimize the number of RISC-V instructions used. You may
assume all question parts are independent.

These are all of the previously defined C variables and their types:
e Xx (int *)

e y (int)

e z (int)
Assume:

e X = ao

o y=2al

e z = a2

e gq=a3

You may use any RISC-V registers in your answer, provided that the functionality is equivalent to that
given in the C code. You may not use pseudoinstructions in your answers.

A. (2 points) int q = *x;

B. (2 points) int g = *(x + y);

6.1900 Spring 2023 Q4 -16 0f 23 - Exam

C.(Q2 points) int q = *(x + 1);

D. (2 points) int g = 5 * y;

E. (2 points) int q = y > z;

F. (2 points) *x = 0x90007101;

6.1900 Spring 2023 Q4 -17 0f 23 - Exam

Problem 7. Let’s Call it a Night (12 points)

Translate the C function, hypotenuse, into a RISC-V assembly procedure. You may assume that exp
and sqrt are already defined and that these procedures follow calling convention and work as expected,
but you cannot make any other assumptions about their implementations. You must use them just as
they are used in the C program. Your assembly procedure must adhere to RISC-V calling conventions.
Additionally, there are only 12 bytes available to use on the stack, so your implementation cannot
use more than 12 bytes of the stack.

C Implementation:

int hypotenuse(int a, int b){
return sqrt(exp(a, 2) + exp(b, 2));

}

RISC-V Implementation

hypotenuse:

6.1900 Spring 2023 Q4 - 18 0f 23 - Exam

This page intentionally left blank

6.1900 Spring 2023 Q4 -190f23 - Exam

This page intentionally left blank

6.1900 Spring 2023 Q4 -200f23 - Exam

Appendix 1: String functions

char *strcat(char *dest, const char *src) - appends the string pointed to by src to the end
of the string pointed to by dest. This function returns a pointer to the resulting string dest.

char *strncat(char *dest, const char *src, size_t n) - appends the string pointed to by
src to the end of the string pointed to by dest up to n characters long. This function returns a pointer to
the resulting string dest.

char *strcpy(char *dest, const char *src) - copies the string pointed to, by src to dest.
This returns a pointer to the destination string dest.

char *strncpy(char *dest, const char *src, size_t n) - copiesup to n characters from
the string pointed to, by src to dest. In a case where the length of src is less than that of n, the
remainder of dest will be padded with null bytes. This function returns the pointer to the copied string.

int strcmp(const char *strl, const char *str2) - compares the string pointed to, by stril
to the string pointed to by str2. This function return values that are as follows —
e if Return value < 0 then it indicates strl is less than str2.

e if Return value > 0 then it indicates str2 is less than stril.

e if Return value = 0 then it indicates strl is equal to str2.

int strncmp(const char *strl, const char *str2, size_t n) - compares at most the first
n bytes of strl and str2. This function return values that are as follows —
e if Return value < 0 then it indicates strl is less than str2.

e if Return value > 0 then it indicates str2 is less than stril.
e if Return value = 0 then it indicates strl is equal to str2.

char *strchr(const char *str, int c) - searches for the first occurrence of the character ¢ (an
unsigned char) in the string pointed to by the argument str. This returns a pointer to the first
occurrence of the character ¢ in the string str, or NULL if the character is not found.

char *strrchr(const char *str, int c) - searches for the last occurrence of the character ¢
(an unsigned char) in the string pointed to, by the argument str. This function returns a pointer to
the last occurrence of character in str. If the value is not found, the function returns a null pointer.

char *strstr(const char *haystack, const char *needle) - function finds the first
occurrence of the substring needle in the string haystack. The terminating ' \@" characters are not
compared. This function returns a pointer to the first occurrence in haystack of any of the entire
sequence of characters specified in needle, or a null pointer if the sequence is not present in haystack.

char *strtok(char *str, const char *delim) - breaks string str into a series of tokens using

the delimiter delim. This function returns a pointer to the first token found in the string. A null pointer is
returned if there are no tokens left to retrieve.

6.1900 Spring 2023 Q4 -21 0of 23 - Exam

Appendix 2: ASCII Table

ASCII Tabl

¢ Hex O0ct Char |Dec Hex O0ct Char |Dec Hex O0ct Char |Dec Hex Oct Char

0 0 0 32 20 40 [space] 64 40 100 @ 96 60 140 N
1 1 1 33 21 41 ! 65 41 101 A 97 61 141 a
2 2 2 34 22 42 " 66 42 102 B 98 62 142 b
3 3 3 35 23 43 # 67 43 103 C 99 63 143 C
4 4 4 36 24 44 $ 68 44 104 D 100 64 144 d
5 5 5 37 25 45 % 69 45 105 E 101 65 145 e
6 6 6 38 26 %6 & 70 46 106 F 102 66 146 f
7 7 7 39 27 47 71 47 107 G 103 67 147 g
8 8 10 40 28 50 (72 48 110 H 104 68 150 h
9 9 11 41 29 51) 73 49 111 | 105 69 151 i
10 A 12 42 2A 52 * 74 4A 112] 106 6A 152 j
11 B 13 43 2B 53 + 75 4B 113 K 107 6B 153 k
12 C 14 44 2C 54 s 76 4C 114 L 108 6C 154 |
13 D 15 45 2D 55 - 77 4D 115 M 109 6D 155 m
14 E 16 46 2E 56 . 78 4E 116 N 110 6E 156 n
15 F 17 47 2F 57 / 79 4F 117 (0] 111 6F 157 0
16 10 20 48 30 60 0 80 50 120 P 112 70 160 p
17 11 21 49 31 61 1 81 51 121 Q 113 71 161 q
18 12 22 50 32 62 2 82 52 122 R 114 72 162 r
19 13 23 51 33 63 3 83 53 123 S 115 73 163 s
20 14 24 52 34 64 4 84 54 124 T 116 74 164 t
21 15 25 53 35 65 5 85 55 125 U 117 75 165 u
22 16 26 54 36 66 6 86 56 126 \ 118 76 166 \
23 17 27 55 37 67 7 87 57 127 w 119 77 167 w
24 18 30 56 38 70 8 88 58 130 X 120 78 170 X
25 19 31 57 39 71 9 89 59 131 Y 121 79 171 y
26 1A 32 58 3A 72 : 90 5A 132 Z 122 TA 172 z
27 1B 33 59 3B 73 ; 91 5B 133 [123 7B 173 {
28 1C 34 60 3C 74 < 92 5C 134 \ 124 7C 174 |
29 1D 35 61 3D 75 = 93 50 135] 125 7D 175 }
30 1E 36 62 3E 76 > 94 5E 136 ~ 126 7E 176 ~
31 1F 37 63 3F 77 ? 95 5F 137 _ 127 7F 177

6.1900 Spring 2023 Q4 -220f23 - Exam

Appendix 3: C Operator Precedence

Precedence |Operator Description Associativity
1 ++ -- Suffix/postfix increment and decrement Left-to-right
@) Function call
[] Array subscripting
Structure and union member access
-> Structure and union member access through pointer
2 ++ -- Prefix increment and decrement Right-to-left
+ - Unary plus and minus
I~ Logical NOT and bitwise NOT
(type) Cast
* Indirection (dereference)
& Address-of
3 /% Multiplication, division, and remainder Left-to-right
4 + - Addition and subtraction
5 << >> Bitwise left shift and right shift
6 < <= For relational operators < and < respectively
> >= For relational operators > and > respectively
== l= For relational = and # respectively
& Bitwise AND
A Bitwise XOR (exclusive or)
10 | Bitwise OR (inclusive or)
11 && Logical AND
12 | | Logical OR
13 2 Ternary conditional Right-to-left
14 = Simple assignment
+= -= Assignment by sum and difference
*¥= /= %= Assignment by product, quotient, and remainder
<K= >>= Assignment by bitwise left shift and right shift
= = |= Assignment by bitwise AND, XOR, and OR

6.1900 Spring 2023 Q4

-230f23 -

Exam

