

6.1903 Spring 2024 Q3 - 1 of 23 - Exam

 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1903: Introduction to Low-level Programming in C and Assembly

Spring 2024, Quarter 3

Name: Kerberos:

MIT ID #:

#1 (14)

#2 (13)

#3 (16)

#4 (16)

#5 (18)

#6 (13)

#7 (10)

Total (100)

Exam content is on both sides of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

IMPORTANT: Avoid talking about and communicating the contents of this exam with other
students until we have announced it is ok to do so on Piazza. Failure to do so will be considered an
academic policy violation.

6.1903 Spring 2024 Q3 - 2 of 23 - Exam

This page intentionally left blank

6.1903 Spring 2024 Q3 - 3 of 23 - Exam

Problem 1. When Two Hydrants Meet (14 points)
The 6.1903 website logs show that most students work on assignments from 00:00 to 08:00 in 24-hour
time (midnight-8:00 am in US format). You and your friends would like to meet up during this window of
time to pset together. Together, you decide to encode your availabilities in that eight-hour time window in
fifteen-minute increments using a 32-bit integer where the least significant bit represents the 00:00-00:15
time slot. 1 means available. 0 means not available. As an example, someone with an availability from
00:00 to 00:30 and from 01:00-01:15 would have a representation of:

0b0000_0000_0000_0000_0000_0000_0001_0011

For now, the platform has two users, Albert and Balbert. Their availability for the 00:00-08:00 time
window is declared and initialized in int a and int b for Albert and Balbert, respectively.

A. (2 points) For the scenario below, write an equivalent C expression using only:

● Bitwise operators (| , & , ^ , ~ , << , >>)
● Constants
● Variables (a, b)

Generate a schedule of when either
Albert or Balbert are available,
before 03:45

B. (2 points) After some changes, Albert’s availability is shown to be 0x0000_003C. You print out
Albert’s availability with the %d format. Convert this to 32-bit two’s complement binary and printf
output. You must indicate all 32 bits.

32-bit two’s complement binary (0b):

printf("%d", a); gives:

6.1903 Spring 2024 Q3 - 4 of 23 - Exam

C. (3 points) After some changes, Balbert’s availability is shown to be -128. Convert this to 32-bit two’s
complement binary and hexadecimal encoding. You must indicate all 32 bits.

32-bit two’s complement binary (0b):

32-bit two’s complement hexadecimal (0x):

D. (4 points) Write a function, updateAvailability, that will set or clear availability in a provided
availability. updateAvailability should appropriately modify the fifteen-minute interval
specified by hour and quarter (of an hour) to be val, without changing the availability for any other
time intervals.

updateAvailability(&a, 4, 3, 0); //clears 04:45-05:00 for albert
updateAvailability(&b, 5, 1, 1); //sets 05:15-05:30 for balbert

void updateAvailability(int* availability, uint8_t hour,
 uint8_t quarter, uint8_t val) {

}

6.1903 Spring 2024 Q3 - 5 of 23 - Exam

E. (3 points) Running on a 32 bit processor, the platform has been a huge hit, and now has 3 billion users.
Each user’s availability is stored in a massive array database. Write a loop to count the number of users
available from 00:00 to 00:15 by filling in the blanks below:

 1 __BLANK1__ count_available(int* database, __BLANK1__ num_users) {
 2 __BLANK1__ count = 0;
 3 for (__BLANK1__ i = 0; i < num_users; i++) {
 4 count += __BLANK2__;
 5 }
 6 return count;
 7 }

Blank #: Line of Code:

BLANK1

BLANK2

6.1903 Spring 2024 Q3 - 6 of 23 - Exam

Problem 2. Baby Floats (13 points)

You’ve created a new data type called float8_t. It is similar to the standard float discussed in class, but
it takes up only one byte rather than four. It uses the encoding shown below:

A. (7 points) Answer the following questions about values that can be represented using this format.

Can 1.0 be represented and if so what is the 8 bit
encoding in binary?

Can 2.0 be represented and if so what is the 8 bit
encoding in binary?

What is the largest positive value that can be
represented? (decimal format, i.e. 5.5)

What is the most negative value that can be
represented?

What is the smallest absolute value that can be
represented?

6.1903 Spring 2024 Q3 - 7 of 23 - Exam

B. (6 points) Consider this code below:

uint8_t i1 = 68;

uint8_t i2 = i1 << 1;

float8_t* fp1 = (float8_t*) &i1;

float8_t* fp2 = (float8_t*) &i2;

What are the final values of *fp1 and *fp2? Show your work.

*fp1

*fp2

6.1903 Spring 2024 Q3 - 8 of 23 - Exam

This page intentionally left blank

6.1903 Spring 2024 Q3 - 9 of 23 - Exam

Problem 3. Binary Search Again (16 points)

Here is a C implementation of a function binarySearch that searches for a value val in a sorted array
arr. The function returns the index of val in the array if it exists and -1 otherwise. The function
searches for val in arr from index start (inclusive) to index end (exclusive).

int binarySearch(int *arr, int start, int end, int val) {
 if (start >= end) return -1;
 int mid = (start + end)/2;

 if(arr[mid] == val) {
 return mid;
 } else if(arr[mid] > val) {
 return binarySearch(arr, start, mid, val);
 } else {
 return binarySearch(arr, mid+1, end, val);
 }
}

In RISC-V, this function has the equivalent implementation shown on the following page. stack is a
custom instruction that prints the stack trace and the value of stack pointer whenever it executes. It does
not modify the state of the system (registers, memory etc. in any way).

6.1903 Spring 2024 Q3 - 10 of 23 - Exam

binarySearch:
 blt a1, a2, body
 stack # Get stack trace
 addi a0, zero, -1
 jalr zero, 0(ra)
body:
 addi sp, sp, -8
 sw ra, 4(sp)
 sw s0, 0(sp)
 stack # Get stack trace
 add a4, a1, a2
 srai a4, a4, 1
 slli s0, a4, 2
 add s0, a0, s0
 lw s0, 0(s0)
 blt a3, s0, left
 blt s0, a3, right
 add a0, zero, a4
 jal zero, end
left:
 add a2, zero, a4
 jal ra, binarySearch
 jal zero, end
right:

 jal ra, binarySearch
end:
 lw s0, 0(sp)
 lw ra, 4(sp)
 addi sp, sp, 8
 stack # Get stack trace
 jalr zero, 0(ra)

A. (2 points) Complete the line left blank in the code so that the assembly implementation matches the C
implementation.

Line: ________________________

6.1903 Spring 2024 Q3 - 11 of 23 - Exam

We obtain the stack trace just before the first call to the function binarySearch occurred (TIME 0 in
the table). Then we run binarySearch to search for a value in an array. Some stack traces are produced
as given in the table below. The last row of the table also gives you the value in the register sp at the
corresponding time. Note that the execution may not have reached completion by time point TIME 5.

Address TIME 0 TIME 1 TIME 2 TIME 3 TIME 4 TIME 5

0x3fc93f0c 0x00000004 0x00000004 0x00000004 0x00000004 0x00000004 0x00000004

0x3fc93f10 0x000007c2 0x000007c2 0x000007c2 0x000007c2 0x000007c2 0x000007c2

0x3fc93f14 0x00000123 0x00000123 0x00000123 0x00000123 0x00000035 0x00000035

0x3fc93f18 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0x42107b0c 0x42107b0c

0x3fc93f1c 0x00000123 0x00000123 0x00000123 0x00000030 0x00000030 0x00000030

0x3fc93f20 0x420165b0 0x420165b0 0x420165b0 0x42107b0c 0x42107b0c 0x42107b0c

0x3fc93f24 0x3fc91000 0x3fc91000 0x00000040 0x00000040 0x00000040 0x00000040

0x3fc93f28 0x3fc91000 0x3fc91000 0x42107b00 0x42107b00 0x42107b00 0x42107b00

0x3fc93f2c 0x00000011 0x00000012 0x00000012 0x00000012 0x00000012 0x00000012

0x3fc93f30 0x00000000 0x42176bf8 0x42176bf8 0x42176bf8 0x42176bf8 0x42176bf8

0x3fc93f34 0x00000111 0x00000111 0x00000111 0x00000111 0x00000111 0x00000111

sp 0x3fc93f34 0x3fc93f2c 0x3fc93f24 0x3fc93f1c 0x3fc93f14 0x3fc93f14

B. (2 points) What is the address of the instruction that initiates the first call to binarySearch?

Address: 0x________________

C. (3 points) What address does the label left correspond to?

Address: 0x________________

6.1903 Spring 2024 Q3 - 12 of 23 - Exam

D. (3 points) Can you determine which value (argument val) is the function looking for in the array? If
yes, what is the value? If not, give an interval in which the value lies.

 YES/NO (circle one)
 if YES provide value:____________

 if NO provide interval: ______< value < ______

E. (3 points) Is the value the function is searching for present in the array?

YES/NO ____________

F. (3 points) List all the values that you know are present in the array based on the information in the
stack trace.

6.1903 Spring 2024 Q3 - 13 of 23 - Exam

Problem 4: RISC-V Re-Vise (16 points)

We ran the C functions add_or_multiply and rewrite_array through a buggy C-to-RISC-V-
assembly compiler, resulting in the following assembly functions. Review these assembly functions
below and revise them so they align with their respective C functions. No additional lines are
permitted, only specific line rewrites. The number of incorrect lines is provided in the HINT of
each subproblem.

DO NOT USE PSEUDOINSTRUCTIONS IN ANY PART OF THIS PROBLEM!

A. (4 points)

// Original C function

int add_or_multiply(int x, int y) {
 if (x <= y) {
 x += y;
 return x;
 } else if (y == 3) {
 y *= 9;
 return y;
 }
 return x;
}

Assembly output
HINT: There are 2 incorrect lines

For each incorrect line of the function, write the
correct line of assembly code in its
corresponding blank box below:

add_or_multiply:

 blt a0, a1, label1

 add a0, a0, a1

 jal x0, label2

label1:

 addi a2, x0, 3

 bne a1, a2, label2

6.1903 Spring 2024 Q3 - 14 of 23 - Exam

 slli a3, a1, 3

 add a0, x0, a3

label2:

 jalr x0, 0(ra)

B. (6 points)

REMINDER: DO NOT USE PSEUDOINSTRUCTIONS IN ANY PART OF THIS PROBLEM!

// Original C function

void rewrite_array(int* arr, int length, int start) {
 for (int i = start; i < length; i++) {
 arr[i] = i;
 }
}

Assembly output
HINT: There are 3 incorrect lines

For each incorrect line of the function, write the
correct line of assembly code in its
corresponding blank box below:

rewrite_array:

 add a3, x0, a2

label3:

 bge a2, a1, label4

 slli a4, a3, 4

 add a5, a0, a4

 add a0, a5, x0

6.1903 Spring 2024 Q3 - 15 of 23 - Exam

 addi a3, a3, 1

 jal x0, label3

label4:

 jalr x0, 0(ra)

C. (6 points) Turns out our buggy translator supports two-way translation! We ran the RISC-V assembly
function set_or_add through the translator and it resulted in the following C code. Review the C code
below and revise it so it aligns with the set_or_add assembly function. Again, no additional lines are
permitted, only specific line rewrites.

Original assembly function

set_or_add:
 lui a1, 0x60009
 slli a2, a0, 2
 add a1, a2, a1
 lw a3, 0(a1)
 bge x0, a0, label5
 addi a4, x0, 3
 slli a5, a4, 8
 or a3, a3, a5
 sw a3, 0(a1)
 jal x0, label6
label5:
 bne a0, x0, label6
 addi a4, x0, 1
 slli a5, a4, 8
 add a3, a3, a5
 sw a3, 0(a1)
label6:
 jalr x0, 0(ra)

6.1903 Spring 2024 Q3 - 16 of 23 - Exam

// C output
// HINT: There are 3 incorrect lines

For each incorrect line of the function,
write the correct line of C code in its
corresponding blank box below:

void set_or_add(int mode) {

 int base = 0x60009;

 int* addr = (int*) (base + (4*mode));

 if (mode > 0) {

 addr |= (0b11 << 8);

 } else if (mode == 0) {

 addr += (1 << 8);

 }
}

6.1903 Spring 2024 Q3 - 17 of 23 - Exam

This page intentionally left blank

6.1903 Spring 2024 Q3 - 18 of 23 - Exam

Problem 5. Fibbing is Fun (18 points)

The C implementation of the Fibonacci function is provided for you below together with an
implementation of this function in RISC-V assembly. Unfortunately, the person who wrote the RISC-V
assembly completely forgot about calling convention. Your job is to correct the code so that it properly
follows all RISC-V calling convention rules and properly implements the fibonacci function. To do this
you are only allowed to add operations of the following two forms inside the blank boxes.

● sw reg, constant(sp)
● lw reg, constant(sp)

You may add 0 or multiple lw and sw operations per blank box. Assume that the number of bytes
allocated on the stack, X, is correct for your implementation.
You may not change any of the registers currently being used in the implementation. Do not store
any registers that are not strictly required to be stored by the RISC-V calling convention. For full
credit, minimize the number of lw and sw instructions inside the loop.

C Implementation:

int fib(int n)
{
 int a = 0;
 int b = 1;
 int c, i;
 if (n == 0)
 return a;
 for (i = 2; i <= n; i++) {
 c = sum(a, b);
 a = b;
 b = c;
 }
 return b;
}

Assume function sum is available to your code and follows RISC-V calling conventions.

6.1903 Spring 2024 Q3 - 19 of 23 - Exam

C Implementation reproduced here for convenience:

int fib(int n)
{
 int a = 0;
 int b = 1;
 int c, i;
 if (n == 0)
 return a;
 for (i = 2; i <= n; i++) {
 c = sum(a, b);
 a = b;
 b = c;
 }
 return b;
}

RISC-V Implementation (spans two pages)

a in a0
b in t0
c in s1
i in t1
n in a0 (note: a0 is used for both n and a)
fib:
 addi sp, sp, -X # allocate space on stack, assume X is correct

 li a0, 0 # a = 0
 li t0, 1 # b = 1

 beq a0, zero, iszero # if n == 0 goto iszero
 li t1, 2 # i = 2

 j cmp

6.1903 Spring 2024 Q3 - 20 of 23 - Exam

loop:

 mv a1, t0 # second arg is b

 call sum

 mv s1, a0 # c = a + b
 mv a0, t0 # a = b
 mv t0, s1 # b = c
 addi t1, t1, 1 # increment i

cmp:

 ble t1, a0, loop # branch to loop if i <= n
 mv a0, t0 # a0 = b
end:

 addi sp, sp, X # restore sp
 ret

iszero:

 j end

6.1903 Spring 2024 Q3 - 21 of 23 - Exam

Problem 6. Stringing Dormspam (13 points)

You are writing a program that processes an email passed in using email_text. It determines if the
email is dormspam or not by checking if "bcc'ed to dorms" is contained in the email text, and
summarizes the email by copying the first two sentences into first_two_sents. Write the program by
calling the appropriate string functions with the right arguments! You must use variables as arguments.
It is guaranteed that email_text has at least two sentences and is less than 5,000 characters long, and
the capacity of first_two_sents is 5,000 characters. If the function doesn’t use all three arguments,
leave the unused cells blank. Appendix 1 in the reference packet contains string.h definitions.
Appendix 2 in the reference package contains a reference diagram for strtok operation.

 1 void summarizeEmails(
 2 char* email_text,
 3 int* is_dormspam,
 4 char* first_two_sents)
 5 {
 6 char filter[] = "bcc'ed to dorms";
 7 *is_dormspam = (__BLANK1__ != NULL);
 8 char *sentence_1, *sentence_2;
 9 char dot = '.';
10 char dot_str[] = {dot, '\0'};
11 sentence_1 = __BLANK2__;
12 sentence_2 = __BLANK3__;
13 // copy sentence_1 followed by sentence_2 into first_two_sents
14 __BLANK4__;
15 __BLANK5__;
16 }

Blank #: Function: Argument #1: Argument #2: Argument #3:

BLANK1

BLANK2

BLANK3

BLANK4

BLANK5

6.1903 Spring 2024 Q3 - 22 of 23 - Exam

Problem 7: It’s a Mystery (10 points)

You are handed this mystery function to study:

 1 #include <stdio.h>
 2
 3
 4 void mystery1(char *input, int input_len, char *output) {
 5 uint8_t a = 0;
 6 uint8_t b = 0;
 7 int i;
 8 for (i = 0; i < input_len; i++) {
 9 char c = input[input_len - i - 1];
10 a += c;
11 if (a < c) {
12 b += 1;
13 }
14 output[i] = c;
15 }
16 output[i] = input[i-1] - (a + b);
17 output[i + 1] = 0;
18 }

Consider the test code below:

 char *x = "sIR";
 char y[100];
 mystery1(x, 3, y);
 printf("%s\n", y); // PRINT A

Determine what will get printed by the line PRINT A. (An ASCII table is provided in the
reference packet Appendix 3.)

6.1903 Spring 2024 Q3 - 23 of 23 - Exam

This page intentionally left blank

