

 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1903: Introduction to Low-level Programming in C and Assembly

Spring 2025, Quarter 3

Name: Kerberos:

MIT ID #:

#1 (11)

#2 (14)

#3 (7)

#4 (15)

#5 (13)

#6 (14)

#7 (14)

#8 (12)

Total (100)

Exam content is on BOTH SIDES of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

IMPORTANT: Avoid talking about and communicating the contents of this exam with other
students until we have announced it is ok to do so on Piazza. Failure to do so will be considered an
academic policy violation.

6.1903 Spring 2025 Q3​ - 1 of 29 -​ Exam

Problem 1. Did You Get Recitation Credit? (11 points)

The 6.1903 TAs are devising a new way for the Institute to encode recitation attendance using 32-bit
binary encodings. (Course 6 was suddenly granted enough funding so that recitation section sizes are
capped at 32.) Student X’s attendance is encoded in bit X (from the right), where 1 means present and 0
means absent. Any excess bits are left at zero (for enrollments less than 32). For instance, if the recitation
has 10 students and everyone is present except Student 3, then this class’s attendance can be represented
as:

0b0000_0000_0000_0000_0000_0011_1111_0111

All the attendance encodings for a recitation section A with N expected weeks are defined using the
following data structure:

int rec_A[N] = {0};

6.1903’s Recitation section A has 20 students and expects 5 weeks throughout the term. It has already had
its first two sessions (the zeroth and first week). Its encodings are stored in array rec_A[5]. Assume
that the roster never changes.

A. (4 points) For the scenarios below, write an equivalent C expression using only:

●​ Bitwise or Logical Operators
●​ Constants
●​ Variables (rec_A)

Generate a 32-bit encoding that
sets the X-th bit to 1 if student X
attended both weeks 0 and 1, and 0
otherwise.

Generate a boolean value that is 1
if student 6 attended the zeroth
week, and 0 otherwise.

6.1903 Spring 2025 Q3​ - 2 of 29 -​ Exam

B. (3 points) For the second week, students 0, 2, 6, 7, and 10 attended. You print out the recitation
attendance with the %d format. Encode the attendance with both 32-bit binary and hexadecimal
representation, then evaluate what you would print. You must indicate all 32 bits.

32-bit binary (0b):

32-bit hexadecimal (0x):

printf("%d", rec_A[2]); gives:

C. (4 points) Write a function, setAttendance, which will set Student X’s attendance for week_num-th
class. For example:

setAttendance(rec_A, 9, 0, 1); // marks student 9 present for the 0th
 ​ // week of recitation rec_A
setAttendance(rec_B, 15, 3, 0); // marks student 15 absent for the 3rd

 // week of recitation rec_B

void setAttendance(int * rec_X, uint8_t student_index,
 uint32_t week_num, uint8_t present) {

}

6.1903 Spring 2025 Q3​ - 3 of 29 -​ Exam

Problem 2: RISC-V Riddles (14 points)

A. (8 points) Given the following initial values for registers x0-x7, determine the resulting hexadecimal
value for each of the registers specified.

 x0 = 0x0 x1 = 0x104 x2 = 0x5A x3 = 0x333

 x4 = 0x44 x5 = 0x4 x6 = 0x66 x7 = 0xABCD

 li x0, 3
 addi x1, x1, 0x258
 ori x2, x2, 0x31
 lui x3, 0x34
 ori x4, x4, 0x800
 slli x5, x5, 1
 lw x6, 0x63C(x5)
 xori x7, x7, -1
 j end

. = 0x640
.word 0x55335533
.word 0x11223344
.word 0xFFAAFF00
.word 0x87654321

end:

Results of running assembly code What is the value of each of the following
registers after running the code snippet above?

 x0 = 0x

 x1 = 0x

x2 = 0x

x3 = 0x

x4 = 0x

x5 = 0x

x6 = 0x

x7 = 0x

6.1903 Spring 2025 Q3​ - 4 of 29 -​ Exam

B. (6 points) One of your friends tries to translate the following snippet of C code into RISC-V assembly.
However, they need your help to get it right. Finish the translation of the following C code into assembly.

// Original C code
// arr is an int array
for (int i = 0; i < 4; i++) {
 arr[i] &= i;
 }
}

Complete the assembly code below so that it implements the C for loop
above

 mv a1, zero # i
 addi a2, zero, 4
 li a3, 0x500 # array arr begins at address 0x500
loop:
 bge a1, a2, end
 # Your code here

end:

6.1903 Spring 2025 Q3​ - 5 of 29 -​ Exam

Problem 3. Leftovers (7 points)

A. (2 points) Write the value of the result as a decimal value. Assume each cell is executed
independently. Pay attention to order of operations!

int8_t alpha = 0b00001110;

int8_t result = -128 == 3 << alpha / 2 | 2 ^ 4;

B. (5 points) Tim the Beaver wants to represent Pi as a floating point number using IEEE 754 standard.

Tim approximates as: . Determine the floating point π ≈ 3 + 2−3 + 2−6 + 2−10 ≈ 3. 1416
representation of Tim’s approximation of Pi. Provide your answer in hexadecimal. Show your work.

6.1903 Spring 2025 Q3​ - 6 of 29 -​ Exam

Problem 4. (15 points) Array Maze Architect

For a future 6.1903 lab, students will be developing a maze game that they will be able to navigate using
the buttons on their control board. With your advanced knowledge of the C programming language and
pointer arithmetic, you have been tasked with creating an advanced maze generation algorithm for the lab.

A. (5 points) You structure your maze as a 1D array of uint8_t integers, with “1”s representing walls
and “0”s representing paths. For this problem, assume the following global declarations:

#define ROWS 7​
#define COLS 6​
​
uint8_t maze[ROWS*COLS] = {​
 1, 1, 1, 1, 1, 1, // row 0​
 1, 1, 1, 1, 1, 1, // row 1​
 1, 1, 1, 1, 1, 1, // row 2​
 1, 1, 1, 1, 1, 1, // row 3

 1, 1, 1, 1, 1, 1, // row 4​
 1, 1, 1, 1, 1, 1, // row 5​
 1, 1, 1, 1, 1, 1, // row 6​
};

Recall that the sizeof operation provides the size of a variable or data type in bytes. Assuming the same
32-bit ESP32 system we’ve been working with, complete the table below:

Operation Result

sizeof(maze)

​

sizeof(&maze)

sizeof(&maze[2])

sizeof(maze[0])

sizeof(maze[8])

6.1903 Spring 2025 Q3​ - 7 of 29 -​ Exam

B. (7 points) After declaring an initial maze array with only walls, you develop a function
mazeSculptor to carve out the maze’s tunnels. Your function takes in a start position pointer pointing
somewhere within the maze array.

void mazeSculptor(uint8_t* start) {

 uint8_t* maze_pointer = start;

 *(maze_pointer) = 0;

 // TIME 0

 for (int i = 1; i < COLS-2; i++) {

 *(maze_pointer + i) = 0;

 }

 *(maze_pointer + 8) = 0;

 // TIME 1

 maze_pointer = start + COLS;

 *(maze_pointer) = 0;

 *(maze_pointer + 2*COLS) = 0;

 *(maze_pointer + 2*COLS + 1) = 0;

 // TIME 2

 maze_pointer = start + 2*COLS;

 for (int i = 0; i < COLS; i++) {

 *(maze_pointer + i) = *(start + COLS + i);

 }

 // TIME 3

 maze_pointer[3] = 0;

 maze_pointer[4] = 0;

 // TIME 4

 printf(“Maze generated successfully!\n”);

}

6.1903 Spring 2025 Q3​ - 8 of 29 -​ Exam

Suppose you call the mazeSculptor function in the following way:

mazeSculptor(maze + 2*COLS + 1)

At every state indicated by comments in the function above, clearly write a ‘0’ in every cell in the maze
that would contain a path at that TIME. An extra copy of this figure is provided on the following page
in case you make a mistake. Clearly mark which one should be graded.

6.1903 Spring 2025 Q3​ - 9 of 29 -​ Exam

Here is an extra copy of the figure on the previous page in case you make a mistake and want to start over.
Clearly mark which one should be graded.

6.1903 Spring 2025 Q3​ - 10 of 29 -​ Exam

C. (2 points) You call your mazeSculptor function again but this time with a different start position.
Describe at least two potential outcomes of making the following function call:

mazeSculptor(maze + 6*COLS + 7);

D. (1 point) You decide to call mazeSculptor in an alternative way:

mazeSculptor(maze[2*COLS+1]);

Is this equivalent to our original command in Part B, mazeSculptor(maze + 2*COLS + 1)?
Explain why / why not.

6.1903 Spring 2025 Q3​ - 11 of 29 -​ Exam

This page intentionally left blank

6.1903 Spring 2025 Q3​ - 12 of 29 -​ Exam

Problem 5. Call Me Sometime (13 points)

The function fraction2float converts its numerator and denominator arguments into their
floating-point representation. Its C implementation is shown below, followed by its RISC-V
implementation on the next page.

Reference C implementation:

float fraction2float(int numerator, int denominator){

 // determine sign bit of floating-point output
 int sign = 0;
 if (numerator < 0) {
​ sign = sign ^ 1;
​ numerator = -numerator;
 }
 if (denominator < 0) {
​ sign = sign ^ 1;
​ denominator = -denominator;
 }

 // call sub-functions to combine output
 int exponent = getFloatExponent(numerator, denominator);
 int mantissa = getFloatMantissa(numerator, denominator, exponent);

 // build 32-bit output using sign, exponent, and mantissa
 int output = sign << 31;
 output = output | (exponent << 23);
 output = output | mantissa;

 return output;

}

The equivalent assembly procedure on the next page, fraction2float, calls two helper functions:
getFloatExponent and getFloatMantissa. Currently, fraction2float does not adhere to
RISC-V calling convention. Assume the two helper functions do adhere to calling convention.

6.1903 Spring 2025 Q3​ - 13 of 29 -​ Exam

fraction2float
 # ARGUMENTS:
 # a0: numerator
 # a1: denominator

 # RETURNS: 32 bit floating point (IEEE 754) representation
 # of the fraction specified by (numerator/denominator)

fraction2float:

 li s0, 0 # sign = 0
 bge a0, zero, skip_numerator_flip
 xori s0, s0, 1 # sign = sign ^ 1
 sub a0, zero, a0 # numerator = -numerator
skip_numerator_flip:
 bge a1, zero, skip_denominator_flip
 xori s0, s0, 1 # sign = sign ^ 1
 sub a1, zero, a1 # denominator = -denominator
skip_denominator_flip:

 call getFloatExponent
 mv s1, a0 # save exponent in s1

 mv a2, s1
 call getFloatMantissa
 mv s2, a0 # save mantissa in s2

 slli a0, s0, 31
 slli t0, s1, 23
 or a0, a0, t0
 or a0, a0, s2

 ret

6.1903 Spring 2025 Q3​ - 14 of 29 -​ Exam

A. (2 points) As the function is currently written (with no corrections to calling convention), what
instruction will be executed immediately after the final ret statement?

B. (2 points) As the function is currently written (with no corrections to calling convention), list the
caller-saved and callee-saved registers used anywhere in the function fraction2float. (Include any
registers used by pseudoinstructions).

Caller-saved Callee-saved

6.1903 Spring 2025 Q3​ - 15 of 29 -​ Exam

C. (9 points) In the assembly code box below, add in the necessary assembly code to utilize the stack and
make the function fraction2float adhere to RISC-V calling convention. Do not modify the function
behavior, only add lines that ensure calling convention is followed. You should only use 3 types of
instructions:

●​ Modifications to the stack pointer,
●​ lw instructions to read from the stack,
●​ sw instructions to write to the stack.

 # fraction2float
 # ARGUMENTS:
 # a0: numerator
 # a1: denominator

 # RETURNS: 32 bit floating point (IEEE 754) representation
 # of the fraction specified by (numerator/denominator)

fraction2float:

 li s0, 0 # sign = 0
 bge a0, zero, skip_numerator_flip
 xori s0, s0, 1 # sign = sign ^ 1
 sub a0, zero, a0 # numerator = -numerator
skip_numerator_flip:
 bge a1, zero, skip_denominator_flip
 xori s0, s0, 1 # sign = sign ^ 1
 sub a1, zero, a1 # denominator = -denominator
skip_denominator_flip:

6.1903 Spring 2025 Q3​ - 16 of 29 -​ Exam

 call getFloatExponent
 mv s1, a0 # save exponent in s1

 mv a2, s1
 call getFloatMantissa
 mv s2, a0 # save mantissa in s2

 slli a0, s0, 31
 slli t0, s1, 23
 or a0, a0, t0
 or a0, a0, s2

 ret

6.1903 Spring 2025 Q3​ - 17 of 29 -​ Exam

Problem 6. (14 points) The Bitville Library
The Bitville Library is undergoing renovations and has hired you to help digitize its book management
system. They have defined several C structs and functions, which you will work with in this problem. A
struct called Book is defined below to represent a book in the library. Interestingly, in Bitville, there are
only two book genres: fiction and nonfiction.You may assume the library string.h has been included
for all parts of this problem.

struct Book {

 char title[100]; ​ // Array to store the book title.

 ​ // Contains only ASCII characters.

 char author[50]; ​ // Array to store the author's name.

 ​ // Contains only ASCII characters.

 uint32_t pub_year;​ // Year the book was published.

 bool is_fiction; ​ // True if the book is fiction, false if it’s

 ​ // non-fiction.

 bool is_checked_out; // True if the book is currently checked out,

 ​ // false otherwise

};

A. (5 points) Write a function called createBook that takes the title, author, publication year, and fiction
flag as parameters and returns a Book struct initialized with these values. Take careful notice of the
parameters. Assume that is_checked_out is false by default and that the provided title and
author strings are properly sized and null-terminated. Assume that the title and author string will
contain only ASCII characters.

struct Book createBook(const char *title, const char *author,

 uint32_t pub_year, bool is_fiction){

​ struct Book new_book; // Create a new book instance

​ // YOUR CODE BELOW

​ return new_book;​
}

6.1903 Spring 2025 Q3​ - 18 of 29 -​ Exam

B. (4 points) Before adding new books to the library, Bitville librarians require that each book’s title
contain only lowercase letters (a-z) and spaces. Write a function called validateTitle that validates
this condition and returns true if valid and false if otherwise. Like in part A, assume that the title string
is properly null-terminated and contains only ASCII characters.

// Returns true if the Book's title contains only lowercase letters (a-z)

// and the space character, false otherwise.

bool validateTitle(struct Book *book) {

 // YOUR CODE BELOW

}

6.1903 Spring 2025 Q3​ - 19 of 29 -​ Exam

C. (5 points) A struct called Library is defined below to represent the library:

struct Library {

 Book **books; ​ // Array of pointers to Book structs representing

 ​ // the books in the library.

 uint32_t count; ​ // Current number of books in the library /

 ​ // current size of books array.

 uint32_t capacity; // Max books allowed; full when count == capacity.

};

Before adding a book to the library, librarians ensure the following:
●​ The book meets the title validation criteria from Part B.
●​ No other book in the library has the same title.
●​ Adding the book does not exceed the library’s capacity.

Write a function called addBook on the next page that verifies these conditions and, if all are true, adds
the book to the books array. This function should return true if the book was successfully added and false
otherwise. You may call your function from Part B as needed. Assume that your function from Part B is
fully functional. Assume that the Library struct has been properly initialized (with valid pointers), and
that count is initially set to be less than capacity.

For convenience, the Book struct definition is reproduced here:

struct Book {

 char title[100]; ​ // Array to store the book title.

 ​ // Contains only ASCII characters.

 char author[50]; ​ // Array to store the author's name.

 ​ // Contains only ASCII characters.

 uint32_t pub_year;​ // Year the book was published.

 bool is_fiction; ​ // True if the book is fiction, false if it’s

 ​ // non-fiction.

 bool is_checked_out; // True if the book is currently checked out,

 ​ // false otherwise

};

6.1903 Spring 2025 Q3​ - 20 of 29 -​ Exam

bool addBook(struct Library *lib, struct Book *book) {

 // YOUR CODE BELOW

}

6.1903 Spring 2025 Q3​ - 21 of 29 -​ Exam

This page intentionally left blank

6.1903 Spring 2025 Q3​ - 22 of 29 -​ Exam

Problem 7: (14 points) Some Algebra Practice

Here is a C implementation of a function linearConvergence that determines if a series of operations
on input leads to convergence to 0. The function returns depth if the input is ever equal to 0 and 0 if
the maximum recursive depth is exceeded.

int linearConvergence(int input, int alpha, int beta, int depth) {

 if (depth >= MAXIMUM_DEPTH) {

 return 0;

 }

 int shifted = input >> alpha;

 if (input == 0) {

 return depth;​
 } else if (input > 0) {

 return linearConvergence(shifted - beta, alpha, beta, depth+1);

 } else {

 return linearConvergence(shifted + beta, alpha, beta, depth+1);

 }

}

In RISC-V, this function has the equivalent implementation shown on the following page. stack is a
custom instruction that prints the stack trace and the value of stack pointer whenever it executes. It does
not modify the state of the system (registers, memory etc. in any way).

6.1903 Spring 2025 Q3​ - 23 of 29 -​ Exam

linearConvergence:

 addi t0, zero, MAXIMUM_DEPTH

 blt a3, t0, body

 stack # Get stack trace

 addi a0, zero, 0

 jalr zero, 0(ra)

body:

 addi sp, sp, -8

 sw s0, 0(sp)

 sw ra, 4(sp)

 stack # Get stack trace

 sra s0, a0, a1

 blt a0, zero, negative

 blt zero, a0, positive

 jal zero, end

negative:

 add a0, s0, a2

 addi a3, a3, 1

 jal ra, linearConvergence

 jal zero, end

positive:

 sub a0, s0, a2

 addi a3, a3, 1

 jal ra, linearConvergence

End:

 lw s0, 0(sp)

 lw ra, 4(sp)

 addi sp, sp, 8

 stack # Get stack trace

 jalr zero, 0(ra)

A. (2 points) Complete the line left blank in the code so that the assembly implementation matches the C
implementation.

Line:__________________________________

6.1903 Spring 2025 Q3​ - 24 of 29 -​ Exam

We obtain the stack trace just before the first call to the function linearConvergence occurred (TIME
0 in the table). Then we run linearConvergence to determine convergence. Some stack traces are
produced as given in the table below. The last row of the table also gives you the value in the register sp
at the corresponding time. Execution may not have reached completion by time point TIME 5.

Address TIME 0 TIME 1 TIME 2 TIME 3 TIME 4 TIME 5

0x000802a0 0x000a05a0 0x000a05a0 0x000a05a0 0x000a05a0 0x00000003 0x00000003

0x000802a4 0x00000211 0x00000211 0x00000211 0x00000211 0x00000270 0x00000270

0x000802a8 0xfffffffe 0xfffffffe 0xfffffffe 0xfffffffe 0xfffffffe 0xfffffffe

0x000802ac 0x00000000 0x00000000 0x00000000 0x00000260 0x00000260 0x00000260

0x000802b0 0x8f000010 0x8f000010 0x0000000b 0x0000000b 0x0000000b 0x0000000b

0x000802b4 0x0000001a 0x0000001a 0x00000270 0x00000270 0x00000270 0x00000270

0x000802b8 0x00001986 0x00000019 0x00000019 0x00000019 0x00000019 0x00000019

0x000802bc 0x00001986 0x00000214 0x00000214 0x00000214 0x00000214 0x00000214

0x000802c0 0x00000a50 0x00000a50 0x00000a50 0x00000a50 0x00000a50 0x00000a50

0x000802c4 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff 0xffffffff

0x000802c8 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

0x000802cc 0x00000214 0x00000214 0x00000214 0x00000214 0x00000214 0x00000214

sp 0x000802c0 0x000802b8 0x000802b0 0x000802a8 0x000802a0 0x000802a0

B. (2 points) What is the address of the instruction that initiates the first call to linearConvergence?

Address: 0x___________________

C. (3 points) What address does the label negative correspond to?

Address: 0x___________________

6.1903 Spring 2025 Q3​ - 25 of 29 -​ Exam

D. (4 points) If alpha is 2 and beta is 17, list two possibilities for the initial value of input:

Possible initial value for input:

Another possible initial value for input:

E. (3 points) Assume that linearConvergence is initially called with a depth of 0. Does the function
converge in time? If yes, then how many recursive calls are necessary (value of depth when the function
completes)? If not, what is our value of MAXIMUM_DEPTH?

Yes or No?

Value:

6.1903 Spring 2025 Q3​ - 26 of 29 -​ Exam

This page intentionally left blank

6.1903 Spring 2025 Q3​ - 27 of 29 -​ Exam

Problem 8. Summy and Char (12 points)

Here’s some code:

int sumCharArray(const char * ar) {

 int a = 0;

 char * c = ar;

 while (*c != 0){

 a += *c;

 c++;

 }

 return a;

}

int m1(const char * ar) {

 int a = 0;

 int b = 0;

 char * c = ar;

 while (*c != 0){

 a += *c;

 b++;

 c++;

 }

 return a/b;

}

int m2(const char * ar1, const char * ar2, char * ar3) {

 int a = 0;

 int b = 0;

 char * c = ar1;

 char * d = ar2;

 char * e = ar3;

 while (*c != 0 && *d != 0){

 *e = (*c + *d)/2;

 a++;

 c++;

 d++;

 e++;

 }

 *e = 0;

 return a;

}

6.1903 Spring 2025 Q3​ - 28 of 29 -​ Exam

We then run this code:

int main(void){
 char szn[] = "SUMMer"; //season
 char mit[] = "MIT"; //MIT
 char cit[] = "CIT"; //Caltech
 char git[] = "GIT"; //rambling wreck

 szn[4] = 0;

 printf("print1: %d\n", sumCharArray(szn));
 printf("print2: %d\n", sumCharArray(mit) - sumCharArray(cit));
 printf("print3: %d\n", sumCharArray(cit) - sumCharArray(git));
 printf("print4: %c\n", m1(szn) + 5);

 char c[100];
 int cap = m2(szn, mit, c);
 printf("print5: %d\n", cap);
 printf("print6: %s\n", c);
 }

Fill in the print transcripts below (pay attention to the string formatting arguments).

print1:

print2:

print3:

print4:

print5:

print6:

6.1903 Spring 2025 Q3​ - 29 of 29 -​ Exam

	
	6.1903: Introduction to Low-level Programming in C and Assembly
	Spring 2025, Quarter 3

