MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1904: Introduction to Low-level Programming in C and Assembly

Spring 2025, Quarter 4

Name: Kerberos:

MIT ID #:

#1 (15)

#2 (13)

#3 (14)

#4 (15)

#5 (15)

#6 (16)

#7 (12)

Total (100)

Exam content is on BOTH SIDES of the exam sheets.
Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.
IMPORTANT: Avoid talking about and communicating the contents of this exam with other

students until we have announced it is ok to do so on Piazza. Failure to do so will be considered an
academic policy violation.

6.1904 Spring 2025 Q4 -10f25- Exam

Problem 1. Mini Float (15 points)

A float8_t is an 8-bit floating point type that consists of 1 sign bit, 5 exponent bits, and 2 mantissa bits.
It uses an exponent bias of 15. Recall that the exponent is encoded as an unsigned number.

sign exponent mantissa

7 6 5 4 3 2 1 0

2
(_1)sign . 2exp—15 . 1 + Z 62_22—2'
i=1

A. (2 points) Answer the following (you should leave your answers in simplified power-of-2 scientific

notation, e.g. 1.5 - 23):

What is the largest possible value
that a float8_t can represent?

What is the smallest positive value
the float8_t can represent?

B. (2 points) Given the float8_t value 0b11000101, what is its decimal representation?

6.1904 Spring 2025 Q4 -20f25- Exam

C. (3 points) Consider the code below:

float8_t x = ©blloee1le01l;
float8 t y = 0b01000011;
float8_ t z = x+y;

What is the 8 bit binary representation of float8_t z?

D. (1 point) Express your answer from part C in hexadecimal.

E. (2 points) Given the variable float8_t X, write an expression for the absolute value of X as a
float8_t using only bitwise operators.

6.1904 Spring 2025 Q4 -3 0f25- Exam

F. (5 points) Let’s imagine we’re on a computer that does not natively support float8_t data types. We
would still like to work with them, so we’ll handle them using uint8_t variables, just like we did in Lab
3 where we used uint8_t variables to hold locations for Snake segments and food.

Write a function, divideByPowerOfTwo, which takes in a uint8_t val containing a number encoded
as a float8_t and a second argument uint8_t pow, which is used to specify a power-of-two.
Specifically, the function should interpret the bits of val as a float8_t, divide that value by 2 raised to
the power pow, and finally return the result in float8_t format. For example: if val encodes 32.0 and
pow=3, the result should be the float8_t encoding of 4.0.

If the result of the division is too small to be represented using the float8_t encoding, the function
should return the smallest possible float8_t value with the correct sign.

uint8_ t divideByPowerOfTwo(uint8 t val, uint8 t pow) {

6.1904 Spring 2025 Q4 -4 of 25 - Exam

This page intentionally left blank

6.1904 Spring 2025 Q4 -50f25- Exam

Problem 2. Delivery System (13 points)

Your friends want to build a grocery delivery system where customers can place orders and get products
delivered to their home. They implemented the following structs to store the data on a 32-bit system:

struct Product{

char name[40]; // name of the product
float price; // price of the product
¥
struct Customer{
char name[40]; // customer name
char phone_number[12]; // customer phone number
char address[100]; // delivery address
¥
struct Order{
uintile t id; // order ID
uint8 _t num_products; // number of products ordered by the customer
uint8_ t status; // delivery status
struct Customer customer; // customer data

struct Product* products[15]; // an array of Product pointers

}s

A. (3 points) First, they need to evaluate how much memory each struct type uses. Using the sizeof
operator, complete the table below. You can assume no byte-alignment or padding in the structs.

Operation Value

sizeof(struct Product)

sizeof(struct Customer)

sizeof(struct Order)

6.1904 Spring 2025 Q4 -6 0f 25 - Exam

B. (4 points) Next, they want to print the name of a product given a variable order of type struct
Order. Assume that the product at index 1 exists and is valid. Circle all the correct ways to access the

name of this product. You will earn points for each correct answer you circle, but lose points for each
incorrect answer you circle.

1. order.products[1]->name 2. (*order.products[1]).name
3. *order->products[1].name 4, order->products[1]->name
5. (*(order.products + 1))->name 6. (*(order.products + 4))->name
7. *(order.products[1]->name) 8. (**(order.products + 1)).name

C. (6 points) After employing the system, they notice a bug. The names of some customers have no space
between the first and last name, but are instead separated by an underscore (' '). For example, "Alex
Alibaba" is mistakenly stored as "Alex_Alibaba". This causes an error in the payment system. Help
your friends write a function to replace the first underscore (' ') with space in the names of all customers,
given an array of struct Order, by filling in the blank with the correct line of code.

#include<string.h>

__BLANK1__ replaceUnderscore(___BLANK2_ _ orders, int num_orders){

char *ptr;

for(int i = @; i < num_orders; i++){
ptr = __BLANK3__; // use an appropriate function from string.h here
if (__BLANK4_){

__BLANK5__;

}

}

return;

Blank #: Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

__BLANK4__

__BLANK5__

6.1904 Spring 2025 Q4 -7 0f25 - Exam

Problem 3. Get a Grep (14 points)

The function findDir below is designed to search through the directories (i.e. folders) of a simplified file
structure to find a matching directory. In this file structure, every directory is represented by a
Directory struct:

struct Directory {
uint32_t dir_id; // directory ID
struct Directory* children[1@0]; // an array of Directory pointers...
// representing all children...
// of this directory

}s

Within the children array, each element is a pointer to another Directory struct or a NULL pointer; if a
directory has fewer than 10 children, all unused spaces in the children array will hold a NULL pointer. This
function runs recursively to search each child of base_dir until it finds a child directory with a matching
target_id. It returns the depth of the recursion at which the directory is found. If the directory is
not found, the function returns the value -1.

int findDir(struct Directory *base dir, uint32 t target_id) {
if (base_dir->dir_id == target_id)({
return 1;
b
for(int i = 0; i < 10; i++){
if (base_dir->children[i] != NULL){
int n = findDir(base_dir->children[i], target_id);
if (n >= 0){
return n + 1;

}
}
}
// if none of the children find the directory, return -1
return -1;

The following RISC-V assembly code is a translation of the above C function, adhering to calling
convention. In this RISC-V assembly code, in order to access the dir_id member of a Directory, one
must access the data at the address 40 bytes offset from the pointer to the Directory struct. The
children array begins at the same address as the base address of the Directory struct, and each of its
10 elements uses 4 bytes of space for a pointer to another Directory struct.

The special instruction stack indicates the execution point where the code was interrupted to capture the
stack data displayed on the following page.

6.1904 Spring 2025 Q4 -8 of 25 - Exam

findDir:
addi sp, sp, -20
sw af, 0(sp)
sw al, 4(sp)
sw ra, 8(sp)
sw s@, 12(sp)
sw sl1l, 16(sp)

lw so, 40(a0) # access base_dir->dir_id
addi sl1, x0, @ # int i = 9;
bne s0, al, findDir_loop

stack
addi a@, xo, 1
jal x@, findDir_end

findDir_loop:
slli to, s1, 2
add te, a0, to
lw a0, 0(t9)

beq a@, x0, findDir_finishloop
jal ra, findDir

blt a@, x0, findDir_finishloop

addi a@, a0, 1
jal x0, findDir_end

findDir_finishloop:

lw a0, 0(sp) # restore caller-saved registers we care about
lw a1, 4(sp)

addi si1, s1, 1

addi t1, xe@, 10

blt s1, tl1, findDir_loop

addi a@, xo0, -1
findDir_end:

lw ra, 8(sp)

lw s@, 12(sp)

lw s1, 16(sp)

addi sp, sp, 20

jalr x0, 0(ra)

6.1904 Spring 2025 Q4 -9 0f25 - Exam

The findDir function is called, and the capture of stack memory displayed below is recorded at the first
and only moment when the stack instruction is passed, inside of a recursive call to findDir. At the time
of capture, the value of sp was ©@x4110. Use this stack information and the assembly implementation to
answer the following questions about this call to findDir.

Address Contents

0x4100 OXx0000000F
ox4104 0x00009988
0x4108 0x00004324
ox410C OXx00000OF7
ox4110 0x00003494
ox4114 0x00000066
ox4118 0x0000512C
ox411C 0x00000031
ox4120 0x00000001
ox4124 0x00003440
ox4128 0x00000066
ox412C 0x0000512C
0x4130 0x0000018F
ox4134 0x00000004
0x4138 0x00003300
0x413C 0x00000066
0x4140 0x00005544
0x4144 0x00000771
0x4148 OxFFO9FF83
0x414C 0x00000009
0x4150 0x00003394
0x4154 OXFFFFFFFE

A. (1 point) What is the memory address corresponding to the instruction that made the original
(non-recursive) call to findDir ?

Memory Address: 0x

6.1904 Spring 2025 Q4 -10 0f 25 - Exam

B. (2 points) What is the memory address corresponding to the label findDir_finishloop?

Memory Address: Ox

C. (2 points) What were the original values base_dir and target_id passed into the initial function
call?

base_dir: ox target_id: ox

D. (2 points) What is the memory address of the Directory struct that matched the search condition of
the function call?

Memory Address: Ox

E. (2 points) What depth value will be returned by the initial call to findDir?

Depth:

F. (3 points) What are the IDs of all the directories in the path from the original base directory to the
matching directory? List them in the order of base directory to the matching directory, including both
ends.

List of IDs in path:

G. (2 points) In the initial call to findDir, how many direct child directories were searched
unsuccessfully before finding the matching directory?

Number of child directories searched:

6.1904 Spring 2025 Q4 - 11 of 25 - Exam

Problem 4. Tic-Tac-Toe (15 points)

Consider a game of tic-tac-toe. The game board consists of nine cells, with each cell being either empty,
having an X, or having an O. Starting with a blank board, players take turns placing X’s and O’s in one of
nine cells until one of them achieves a three-in-a-row victory. Here’s a game where X has won by having
three-in-a-row on the diagonal.

We’d like to implement tic-tac-toe on our 32 bit RISC-V system. To do this we’re going to encode the
entire 3x3 game board in a single uint32_t. To keep things clean, the bottom 18 bits will be used to
encode all nine-cells in the following order, with the game board indices (i, j) (i.e., column i, row j)
shown on the right below:

(2,0) | (1,0) | (0,0)

31 18 16 14 12 10 8 6 4 2 0

| | | | | | | | | | |
! ! | | | | | |

unused [(2,2)|(1,2)((0,2)|(2,1){(1,1)|(0,1){(2,0)|(1,0)|(0,0) (2,1)

(e,1)

(2,2) | (1,2) | (0,2)

e Each cell is encoded as a 2-bit value with the following encoding scheme:

o An empty cell is encoded as: ©b10

o A cell containing an ‘0" is encoded as: 0b01

o A cell containing an ‘X" is encoded as: @b11

O @b0o is an invalid state
e There exists a global pointer to the game board called gb that holds the uint32_t of game state.
e This game has two players, each represented by a single character: 'X"' and '0".

6.1904 Spring 2025 Q4 -12 0f 25 - Exam

Two example encodings are provided below (note the upper 14 bits are set to 0 here for the sake of clarity,
but as stated on the previous page, they are unused and ignored):

0x000297BA 0x0002A6B7

Your main task is to complete the provided functions, in the spaces where there are blanks (e.g.
__BLANK1_). These functions interact with this pre-defined, compact game state. For this problem,
understanding the game /ogic of tic-tac-toe is not expected or required.

A. (2 points) Write a function resetBoard to initialize or reset the game state, setting all cells on the
board back to their empty state.

void resetBoard(uint32_t *gb){

6.1904 Spring 2025 Q4 -13 0f 25 - Exam

B. (7 points) Complete the function updateGameBoard below so that it returns a O if the player tries to

move to an occupied cell. If the player tries to move to an empty cell, then it should replace the empty
cell with the player’s encoding in the game board and return a 1.

// Parameters:

//* i
// Behavior:

// not modify the board.

if (__BLANK2_){
return 0;
} else {
if (player == 0x58){
__BLANK3___
}
if (player == @x4F){
__BLANK4___
}

return 1;

// * gb: A pointer to the game board.

// * player: A char representing the player making the move
i: The column index (@-2) of the move.

/] * The row index (©-2) of the move.

// * If the cell at (i, j) is already occupied: the function should return © and

// * If the cell at (i, j) is empty: the function should update the board by
// placing the player's mark using the correct 2-bit encoding and return 1.

uint8_t updateGameBoard(uint32_t *gb, char player, uint8 t i, uint8 t j){
// Calculate the bit position for cell at coordinates (i, j)
uint8_t shift_amount = __BLANK1__ ;

// Check if this cell is already occupied. Otherwise, populate that cell.

Blank #:

Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

(Multiple lines OK)

__BLANK4__

(Multiple lines OK)

6.1904 Spring 2025 Q4

- 14 of 25 -

Exam

C. (6 points) Complete the function checkForWinner to detect if a player has won. It should return the
winner’s char ('X' or '0") if found, otherwise the null character. For convenience, we’ve provided an
array containing sub-arrays whose indexes correspond to each of the eight winning index combinations:

uint8_t widx[8][3] =

{ Cell Index Mapping:
{0,1,2}, // Top row
{3,4,5}, // Middle row y) 1 0
{6,7,8}, // Bottom row
{0,3,6}, // Right column
{1,4,7}, // Middle column 5 4 3
{2,5,8}, // Left column
{0,4,8}, // Diagonal (top-right to bottom-left)
{2,4,6}, // Diagonal (top-left to bottom-right) 8 7 6

s

char checkForWinner(uint32_t *gb){
// Iterate through the 8 possible winning lines
for (int k = 0; k < 8; k++){
// Extract the 2-bit values of the three cells in the line

uint8_t c1 = _ BLANK1__ ;
uint8 t c2 = _ BLANK2__ ;
uint8_t ¢3 = __BLANK3__ ;

// Check if all three cells are the same AND are not the empty cell.
if (__BLANK4_){
// If so, return the appropriate character.
if (__BLANK5_){
return '0’';
Yelse{
return 'X';
}

}
}

// If the loop completes without finding a winner, return null character.
return NULL;

Blank #: Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

__BLANK4__

__BLANK5__

6.1904 Spring 2025 Q4 -150f25 - Exam

Problem 5. RISC-V Assembly (15 points)

A. (6 points) We ran the following function through a buggy C compiler and it produced the following
buggy RISC-V assembly code. Please help us correct it by identifying the 4 incorrect lines and replacing
them with a correct RISC-V instruction in the right hand column. Do not use pseudoinstructions.

// Original C function

int mystery(int x, int y, int z) {
if (z/2 <y) {
X += Z;
return Xx;
} else if (x % 2 == 0) {
y =X -z
return y;

}

return Xx;

Assembly output For each incorrect line of the function, write
HINT: There are 4 incorrect lines the correct line of assembly code in its
corresponding blank box below

mystery: (no pseudoinstructions):

jalr x0, 0(ra)

6.1904 Spring 2025 Q4 -16 of 25 - Exam

B. (4 points) Rewrite each of the four code sequences below with a single RISC-V instruction that
produces the same results for the a@-a7 registers. Note that the resulting values of the t0-1t6 registers
does not need to match across the two implementations. Do not use pseudoinstructions.

Original assembly code

Single RISC-V instruction that produces
equivalent results in a@-a7 (no
pseudoinstructions):

addi a@, zero, 0x37
slli a@, a0, 12

not a2, al

1li to, oxE

srli to, to, 3

beq tO, zero, done
add a1, al, to

done:

addi t1, zero, OxFFE
1li te, 47
sub a2, to, ti

6.1904 Spring 2025 Q4

-17 of 25 - Exam

C. (5 points) The following code snippet is run until the code reaches the end label. Fill in the requested
values in the table below after the code is run:

. = 0x100
addi t3, zero, 0x2C
1i al, 9x61904
lw a2, ox600(t3)
xori a5, t3, ox74
beq al, al, end

. = 0x620
.word 0x12345678
.word ©0x33333333
.word 0x88664422
.word OxABCDEF@1
.word ©x55337799
.word 0x45456767

end:

Question Answer

Address of 1w a2, ©x600(t3) instruction: | ©X

32-bit encoding of xori a5, t3, 0x74
instruction: | ©X

a2 ox

a5 ox

6.1904 Spring 2025 Q4 - 18 of 25 - Exam

This page intentionally left blank

6.1904 Spring 2025 Q4 -19 of 25 - Exam

Problem 6. Pythagorean Protocol Pitfalls (16 points)

The following assembly function, hypotenuse, is a buggy implementation that tries to compute the
hypotenuse of a right triangle given the length of each of its legs. It calls two helper functions, square
and sqrt whose full implementations are omitted. Assume both helper functions only take one argument
and properly adhere to the RISC-V calling convention.

Instruction | # hypotenuse

Address # ARGUMENTS:
a0: legl
al: leg2

RETURNS: /(leg1® + leg2?)

hypotenuse:
0x500 addi sp, sp, 4
0x504 sw ra, 0(sp)

0x508 call square

ox50C mv sO, ao
0x510 sw ra, 0(sp)
ox514 call square

0x518 add a0, a0, so
0x51C sw ra, 0(sp)
0x520 call sqgrt

0x524 1w ra, 9(sp)
0x528 addi sp, sp, -4

0x52C ret

square:
IMPLEMENTATION OMITTED
ret

sqrt:
IMPLEMENTATION OMITTED
ret

6.1904 Spring 2025 Q4 -200f 25 - Exam

Assume that the original instruction call to hypotenuse was made from address ©x200 and that the
stack pointer register sp = 0x6280 at the time of the original call.

A. (1 point) Considering the original call to hypotenuse, after executing the sw ra, ©(sp) at address
0x504, what is the value of the sp register and what is stored at the memory location that it points to?

sp = | Ox Mem[sp] = | Ox

B. (2 points) After executing the sw ra, @(sp) at address ©x510, what is the value of the sp register
and what is stored at the memory location that it points to?

sp = | Ox Mem[sp] = | Ox

C. (1 point) After executing the sw ra, ©@(sp) at address @x51C, what is the value of the sp register
and what is stored at the memory location that it points to?

sp = | @x Mem[sp] = | Ox

D. (2 points) After executing the ret at address @x52C, what is the value of the sp register and what is
the value of pc register?

Sp = | Ox pc = | 0x

E. (2 points) Is the return address, ra, handled correctly? Explain in a few sentences.

F. (2 points) As written, list two issues with how the stack and the stack pointer, sp, are being handled.

6.1904 Spring 2025 Q4 -21 0f25 - Exam

G. (6 points) Our original hypotenuse function contains several errors. Please use the blank right

column to rewrite the hypotenuse function so that it both adheres to the RISC-V calling convention and

is functionally correct.

hypotenuse
ARGUMENTS:
a0: legl
al: leg2

RETURNS: /(leg1® + leg2?)

hypotenuse:
addi sp, sp, 4
sw ra, 0(sp)

call square

mv sO@, a0
sw ra, 0(sp)
call square

add a0, a0, s0
sw ra, 0(sp)
call sqgrt

1w ra, 9(sp)
addi sp, sp, -4
ret

square:
IMPLEMENTATION OMITTED
ret

sqrt:
IMPLEMENTATION OMITTED
ret

hypotenuse
ARGUMENTS:
a0: legl
al: leg2

RETURNS: /(leg1® + leg2?)

hypotenuse:

ret

square:
IMPLEMENTATION OMITTED
ret

sqrt:
IMPLEMENTATION OMITTED
ret

6.1904 Spring 2025 Q4

-220f25 -

Exam

This page intentionally left blank

6.1904 Spring 2025 Q4 -23 of 25 - Exam

Problem 7. Pointer Detective (12 points)

Consider the code below:

#include<stdio.h>
#tinclude<stdint.h>
#include<string.h>

int main(void){

uint32_t a = 19;
uintle_t b = 17;
uint8_t c = 38;

uint32_t * pi;
uintlé_t * p2;
uint8_t * p3;

pl =
p2 =
p3

&b;
&c;
&a;

// note: %08x formats for 8 digits of hexadecimal padded with
printf("
printf(" p2:
printf(" p3:
printf("*pl:
printf("*p2:
printf("*p3:

%08x\n",
%08x\n",
%08x\n",
%08x\n",
%04x\n",
%02x\n",

(int)(p1));
(int)(p2));
(int)(p3));
(int)*pl);
(int)*p2);
(int)*p3);

pl:

pl+1;
p2+1;
p3-2;

pl
p2
p3

printf(" pl:
printf(" p2:
printf(" p3:
printf("*pl:
printf("*p2:
printf("*p3:

%08x\n",
%08x\n",
%08x\n",
%08x\n",
%04x\n",
%02x\n",

(int)(p1));
(int)(p2));
(int)(p3));
(int)*pl);
(int)*p2);
(int)*p3);

leading ©s

6.1904 Spring 2025 Q4 -24 of 25 -

Exam

When run, the following incomplete printout is generated:

pl: 6ced@b3fa
p2: 6ce@b3f9
p3: 6cedb3fc
*pl: 00130011
*p2: 1126

*p3: 13

pl: _ BLANK1___
p2: _ BLANK2__
p3: __ BLANK3__
*pl: _ BLANK4
*p2: _ BLANK5__
*p3: _ BLANK6__

What is printed in the six blanks? If not enough information is available, write “CAN’T TELL”.

__BLANK1_ :

__BLANK2_:

__BLANK3__:

__BLANK4__:

__BLANKS__:

__BLANK6__:

6.1904 Spring 2025 Q4 - 25 of 25 - Exam

