
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.1904: Introduction to Low-level Programming in C and Assembly

Spring 2025, Quarter 4

Name: Kerberos:

MIT ID #:

#1 (15)

#2 (13)

#3 (14)

#4 (15)

#5 (15)

#6 (16)

#7 (12)

Total (100)

Exam content is on BOTH SIDES of the exam sheets.

Enter your answers in the boxes designated for each problem. Show your work for potential partial credit.

IMPORTANT: Avoid talking about and communicating the contents of this exam with other
students until we have announced it is ok to do so on Piazza.  Failure to do so will be considered an
academic policy violation.

6.1904 Spring 2025 Q4 - 1 of 25 - Exam



Problem 1. Mini Float (15 points)

A float8_t is an 8-bit floating point type that consists of 1 sign bit, 5 exponent bits, and 2 mantissa bits.
It uses an exponent bias of 15.  Recall that the exponent is encoded as an unsigned number.

A. (2 points) Answer the following (you should leave your answers in simplified power-of-2 scientific

notation, e.g. ):1. 5 · 23

What is the largest possible value
that a float8_t can represent?

What is the smallest positive value
the float8_t can represent?

B. (2 points) Given the float8_t value 0b11000101, what is its decimal representation?

6.1904 Spring 2025 Q4 - 2 of 25 - Exam



C. (3 points) Consider the code below:

float8_t x = 0b11000101;
float8_t y = 0b01000011;
float8_t z = x+y;

What is the 8 bit binary representation of float8_t z?

D. (1 point) Express your answer from part C in hexadecimal.

E. (2 points) Given the variable float8_t X, write an expression for the absolute value of X as a
float8_t using only bitwise operators.

6.1904 Spring 2025 Q4 - 3 of 25 - Exam



F. (5 points) Let’s imagine we’re on a computer that does not natively support float8_t data types.  We
would still like to work with them, so we’ll handle them using uint8_t variables, just like we did in Lab
3 where we used uint8_t variables to hold locations for Snake segments and food.

Write a function, divideByPowerOfTwo, which takes in a uint8_t val containing a number encoded
as a float8_t and a second argument uint8_t pow, which is used to specify a power-of-two.
Specifically, the function should interpret the bits of val as a float8_t, divide that value by 2 raised to
the power pow, and finally return the result in float8_t format. For example: if val encodes 32.0 and
pow=3, the result should be the float8_t encoding of 4.0.

If the result of the division is too small to be represented using the float8_t encoding, the function
should return the smallest possible float8_t value with the correct sign.

uint8_t divideByPowerOfTwo(uint8_t val, uint8_t pow) {

}

6.1904 Spring 2025 Q4 - 4 of 25 - Exam



This page intentionally left blank

6.1904 Spring 2025 Q4 - 5 of 25 - Exam



Problem 2. Delivery System (13 points)

Your friends want to build a grocery delivery system where customers can place orders and get products
delivered to their home. They implemented the following structs to store the data on a 32-bit system:

struct Product{
char name[40];         // name of the product
float price;           // price of the product

};

struct Customer{
char name[40]; // customer name
char phone_number[12]; // customer phone number
char address[100];     // delivery address

};

struct Order{
uint16_t id;           // order ID
uint8_t num_products;  // number of products ordered by the customer
uint8_t status;        // delivery status
struct Customer customer;     // customer data
struct Product* products[15]; // an array of Product pointers

};

A. (3 points) First, they need to evaluate how much memory each struct type uses. Using the sizeof
operator, complete the table below. You can assume no byte-alignment or padding in the structs.

Operation Value

sizeof(struct Product)

sizeof(struct Customer)

sizeof(struct Order)

6.1904 Spring 2025 Q4 - 6 of 25 - Exam



B. (4 points) Next, they want to print the name of a product given a variable order of type struct
Order. Assume that the product at index 1 exists and is valid. Circle all the correct ways to access the
name of this product. You will earn points for each correct answer you circle, but lose points for each
incorrect answer you circle.

1. order.products[1]->name 2. (*order.products[1]).name

3. *order->products[1].name 4. order->products[1]->name

5. (*(order.products + 1))->name 6. (*(order.products + 4))->name

7. *(order.products[1]->name) 8. (**(order.products + 1)).name

C. (6 points) After employing the system, they notice a bug. The names of some customers have no space
between the first and last name, but are instead separated by an underscore ('_'). For example, "Alex
Alibaba" is mistakenly stored as "Alex_Alibaba". This causes an error in the payment system. Help
your friends write a function to replace the first underscore  ('_') with space in the names of all customers,
given an array of struct Order, by filling in the blank with the correct line of code.

#include<string.h>

__BLANK1__ replaceUnderscore(__BLANK2__ orders, int num_orders){
char *ptr;
for(int i = 0; i < num_orders; i++){

ptr = __BLANK3__; // use an appropriate function from string.h here
if (__BLANK4__){

__BLANK5__;
}

}
return;

}

Blank #: Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

__BLANK4__

__BLANK5__

6.1904 Spring 2025 Q4 - 7 of 25 - Exam



Problem 3. Get a Grep (14 points)

The function findDir below is designed to search through the directories (i.e. folders) of a simplified file
structure to find a matching directory. In this file structure, every directory is represented by a
Directory struct:

struct Directory {
uint32_t dir_id;                 // directory ID
struct Directory* children[10];  // an array of Directory pointers...

// representing all children...
// of this directory

};

Within the children array, each element is a pointer to another Directory struct or a NULL pointer; if a
directory has fewer than 10 children, all unused spaces in the children array will hold a NULL pointer. This
function runs recursively to search each child of base_dir until it finds a child directory with a matching
target_id. It returns the depth of the recursion at which the directory is found. If the directory is
not found, the function returns the value -1.

int findDir(struct Directory *base_dir, uint32_t target_id) {
if (base_dir->dir_id == target_id){
return 1;

}
for(int i = 0; i < 10; i++){

if (base_dir->children[i] != NULL){
int n = findDir(base_dir->children[i], target_id);
if (n >= 0){

return n + 1;
}

}
}
// if none of the children find the directory, return -1
return -1;

}

The following RISC-V assembly code is a translation of the above C function, adhering to calling
convention. In this RISC-V assembly code, in order to access the dir_id member of a Directory, one
must access the data at the address 40 bytes offset from the pointer to the Directory struct. The
children array begins at the same address as the base address of the Directory struct, and each of its
10 elements uses 4 bytes of space for a pointer to another Directory struct.

The special instruction stack indicates the execution point where the code was interrupted to capture the
stack data displayed on the following page.

6.1904 Spring 2025 Q4 - 8 of 25 - Exam



findDir:
addi sp, sp, -20
sw a0, 0(sp)
sw a1, 4(sp)
sw ra, 8(sp)
sw s0, 12(sp)
sw s1, 16(sp)

lw s0, 40(a0)    # access base_dir->dir_id
addi s1, x0, 0   # int i = 0;
bne s0, a1, findDir_loop

stack
addi a0, x0, 1
jal x0, findDir_end

findDir_loop:
slli t0, s1, 2
add t0, a0, t0
lw a0, 0(t0)

beq a0, x0, findDir_finishloop
jal ra, findDir

blt a0, x0, findDir_finishloop

addi a0, a0, 1
jal x0, findDir_end

findDir_finishloop:

lw a0, 0(sp)   # restore caller-saved registers we care about
lw a1, 4(sp)

addi s1, s1, 1
addi t1, x0, 10
blt s1, t1, findDir_loop

addi a0, x0, -1

findDir_end:

lw ra, 8(sp)
lw s0, 12(sp)
lw s1, 16(sp)
addi sp, sp, 20

jalr x0, 0(ra)

6.1904 Spring 2025 Q4 - 9 of 25 - Exam



The findDir function is called, and the capture of stack memory displayed below is recorded at the first
and only moment when the stack instruction is passed, inside of a recursive call to findDir. At the time
of capture, the value of sp was 0x4110. Use this stack information and the assembly implementation to
answer the following questions about this call to findDir.

Address Contents

0x4100 0x0000000F

0x4104 0x00009988

0x4108 0x00004324

0x410C 0x000000F7

0x4110 0x00003494

0x4114 0x00000066

0x4118 0x0000512C

0x411C 0x00000031

0x4120 0x00000001

0x4124 0x00003440

0x4128 0x00000066

0x412C 0x0000512C

0x4130 0x0000018F

0x4134 0x00000004

0x4138 0x00003300

0x413C 0x00000066

0x4140 0x00005544

0x4144 0x00000771

0x4148 0xFF09FF83

0x414C 0x00000009

0x4150 0x00003394

0x4154 0xFFFFFFFE

A. (1 point) What is the memory address corresponding to the instruction that made the original
(non-recursive) call to findDir ?

Memory Address: 0x___________

6.1904 Spring 2025 Q4 - 10 of 25 - Exam



B. (2 points) What is the memory address corresponding to the label findDir_finishloop?

Memory Address: 0x___________

C. (2 points) What were the original values base_dir and target_id passed into the initial function
call?

base_dir: 0x__________ target_id: 0x__________

D. (2 points) What is the memory address of the Directory struct that matched the search condition of
the function call?

Memory Address: 0x___________

E. (2 points) What depth value will be returned by the initial call to findDir?

Depth: __________

F. (3 points) What are the IDs of all the directories in the path from the original base directory to the
matching directory? List them in the order of base directory to the matching directory, including both
ends.

List of IDs in path:________________________________________________

G. (2 points) In the initial call to findDir, how many direct child directories were searched
unsuccessfully before finding the matching directory?

Number of child directories searched: _____________

6.1904 Spring 2025 Q4 - 11 of 25 - Exam



Problem 4. Tic-Tac-Toe (15 points)

Consider a game of tic-tac-toe. The game board consists of nine cells, with each cell being either empty,
having an X, or having an O. Starting with a blank board, players take turns placing X’s and O’s in one of
nine cells until one of them achieves a three-in-a-row victory. Here’s a game where X has won by having
three-in-a-row on the diagonal.

We’d like to implement tic-tac-toe on our 32 bit RISC-V system. To do this we’re going to encode the
entire 3x3 game board in a single uint32_t. To keep things clean, the bottom 18 bits will be used to
encode all nine-cells in the following order, with the game board indices (i, j) (i.e., column i, row j)
shown on the right below:

● Each cell is encoded as a 2-bit value with the following encoding scheme:
○ An empty cell is encoded as: 0b10
○ A cell containing an 'O' is encoded as: 0b01
○ A cell containing an 'X' is encoded as: 0b11
○ 0b00 is an invalid state

● There exists a global pointer to the game board called gb that holds the uint32_t of game state.
● This game has two players, each represented by a single character: 'X' and 'O'.

6.1904 Spring 2025 Q4 - 12 of 25 - Exam



Two example encodings are provided below (note the upper 14 bits are set to 0 here for the sake of clarity,
but as stated on the previous page, they are unused and ignored):

Your main task is to complete the provided functions, in the spaces where there are blanks (e.g.
__BLANK1__). These functions interact with this pre-defined, compact game state. For this problem,
understanding the game logic of tic-tac-toe is not expected or required.

A. (2 points) Write a function resetBoard to initialize or reset the game state, setting all cells on the
board back to their empty state.

void resetBoard(uint32_t *gb){

}

6.1904 Spring 2025 Q4 - 13 of 25 - Exam



B. (7 points) Complete the function updateGameBoard below so that it returns a 0 if the player tries to
move to an occupied cell.  If the player tries to move to an empty cell, then it should replace the empty
cell with the player’s encoding in the game board and return a 1.

// Parameters:
// * gb:     A pointer to the game board.
// * player: A char representing the player making the move
// * i:      The column index (0-2) of the move.
// * j:      The row index (0-2) of the move.
// Behavior:
// * If the cell at (i, j) is already occupied: the function should return 0 and
//   not modify the board.
// * If the cell at (i, j) is empty: the function should update the board by
//   placing the player's mark using the correct 2-bit encoding and return 1.

uint8_t updateGameBoard(uint32_t *gb, char player, uint8_t i, uint8_t j){
// Calculate the bit position for cell at coordinates (i, j)
uint8_t shift_amount = __BLANK1__ ;

// Check if this cell is already occupied. Otherwise, populate that cell.
if (__BLANK2__){

return 0;
} else {

if (player == 0x58){
__BLANK3__

}
if (player == 0x4F){

__BLANK4__
}
return 1;

}
}

Blank #: Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

(Multiple lines OK)

__BLANK4__

(Multiple lines OK)

6.1904 Spring 2025 Q4 - 14 of 25 - Exam



C. (6 points) Complete the function checkForWinner to detect if a player has won. It should return the
winner’s char ('X' or 'O') if found, otherwise the null character. For convenience, we’ve provided an
array containing sub-arrays whose indexes correspond to each of the eight winning index combinations:

uint8_t widx[8][3] =
{

{0,1,2},    // Top row
{3,4,5},    // Middle row
{6,7,8},    // Bottom row
{0,3,6},    // Right column
{1,4,7},    // Middle column
{2,5,8},    // Left column
{0,4,8},    // Diagonal (top-right to bottom-left)
{2,4,6},    // Diagonal (top-left to bottom-right)

};

Cell Index Mapping:

char checkForWinner(uint32_t *gb){
// Iterate through the 8 possible winning lines
for (int k = 0; k < 8; k++){

// Extract the 2-bit values of the three cells in the line
uint8_t c1 = __BLANK1__ ;
uint8_t c2 = __BLANK2__ ;
uint8_t c3 = __BLANK3__ ;

// Check if all three cells are the same AND are not the empty cell.
if (__BLANK4__){

// If so, return the appropriate character.
if (__BLANK5__){

return 'O';
}else{

return 'X';
}

}
}
// If the loop completes without finding a winner, return null character.
return NULL;

}

Blank #: Line of code:

__BLANK1__

__BLANK2__

__BLANK3__

__BLANK4__

__BLANK5__

6.1904 Spring 2025 Q4 - 15 of 25 - Exam



Problem 5. RISC-V Assembly (15 points)

A. (6 points) We ran the following function through a buggy C compiler and it produced the following
buggy RISC-V assembly code. Please help us correct it by identifying the 4 incorrect lines and replacing
them with a correct RISC-V instruction in the right hand column. Do not use pseudoinstructions.

// Original C function

int mystery(int x, int y, int z) {
if (z/2 < y) {

x += z;
return x;

} else if (x % 2 == 0) {
y = x - z;
return y;

}
return x;

}

6.1904 Spring 2025 Q4 - 16 of 25 - Exam

# Assembly output
# HINT: There are 4 incorrect lines

For each incorrect line of the function, write
the correct line of assembly code in its
corresponding blank box below
(no pseudoinstructions):mystery:

slli t0, a2, 1

bge t0, a1, label1

add t1, a0, a2

jal ra, label2

label1:

addi t0, a0, 1

bne t0, zero, label2

sub a0, a0, a2

label2:

jalr x0, 0(ra)



B. (4 points) Rewrite each of the four code sequences below with a single RISC-V instruction that
produces the same results for the a0-a7 registers. Note that the resulting values of the t0-t6 registers
does not need to match across the two implementations. Do not use pseudoinstructions.

# Original assembly code Single RISC-V instruction that produces
equivalent results in a0-a7 (no
pseudoinstructions):

addi a0, zero, 0x37
slli a0, a0, 12

not a2, a1

li t0, 0xE
srli t0, t0, 3
beq t0, zero, done
add a1, a1, t0

done:

addi t1, zero, 0xFFE
li t0, 47
sub a2, t0, t1

6.1904 Spring 2025 Q4 - 17 of 25 - Exam



C. (5 points) The following code snippet is run until the code reaches the end label. Fill in the requested
values in the table below after the code is run:

. = 0x100

addi t3, zero, 0x2C

li a1, 0x61904

lw a2, 0x600(t3)

xori a5, t3, 0x74

beq a1, a1, end

. = 0x620

.word 0x12345678

.word 0x33333333

.word 0x88664422

.word 0xABCDEF01

.word 0x55337799

.word 0x45456767

end:

Question Answer

Address of lw a2, 0x600(t3) instruction: 0x

32-bit encoding of xori a5, t3, 0x74
instruction: 0x

a2 = 0x

a5 = 0x

6.1904 Spring 2025 Q4 - 18 of 25 - Exam



This page intentionally left blank

6.1904 Spring 2025 Q4 - 19 of 25 - Exam



Problem 6. Pythagorean Protocol Pitfalls (16 points)

The following assembly function, hypotenuse, is a buggy implementation that tries to compute the
hypotenuse of a right triangle given the length of each of its legs. It calls two helper functions, square
and sqrt whose full implementations are omitted. Assume both helper functions only take one argument
and properly adhere to the RISC-V calling convention.

6.1904 Spring 2025 Q4 - 20 of 25 - Exam

Instruction
Address

# hypotenuse
# ARGUMENTS:
#   a0: leg1
#   a1: leg2

# RETURNS: (𝑙𝑒𝑔12 +  𝑙𝑒𝑔22)

0x500
0x504

0x508

0x50C
0x510
0x514

0x518
0x51C
0x520

0x524
0x528

0x52C

hypotenuse:
addi sp, sp, 4
sw ra, 0(sp)

call square

mv s0, a0
sw ra, 0(sp)
call square

add a0, a0, s0
sw ra, 0(sp)
call sqrt

lw ra, 0(sp)
addi sp, sp, -4

ret

square:
# IMPLEMENTATION OMITTED
ret

sqrt:
# IMPLEMENTATION OMITTED
ret



Assume that the original instruction call to hypotenuse was made from address 0x200 and that the
stack pointer register sp = 0x620 at the time of the original call.

A. (1 point) Considering the original call to hypotenuse, after executing the sw ra, 0(sp) at address
0x504, what is the value of the sp register and what is stored at the memory location that it points to?

sp = 0x Mem[sp] = 0x

B. (2 points) After executing the sw ra, 0(sp) at address 0x510, what is the value of the sp register
and what is stored at the memory location that it points to?

sp = 0x Mem[sp] = 0x

C. (1 point) After executing the sw ra, 0(sp) at address 0x51C, what is the value of the sp register
and what is stored at the memory location that it points to?

sp = 0x Mem[sp] = 0x

D. (2 points) After executing the ret at address 0x52C, what is the value of the sp register and what is
the value of pc register?

sp = 0x pc = 0x

E. (2 points) Is the return address, ra, handled correctly? Explain in a few sentences.

F. (2 points) As written, list two issues with how the stack and the stack pointer, sp, are being handled.

6.1904 Spring 2025 Q4 - 21 of 25 - Exam



G. (6 points) Our original hypotenuse function contains several errors.  Please use the blank right
column to rewrite the hypotenuse function so that it both adheres to the RISC-V calling convention and
is functionally correct.

# hypotenuse
# ARGUMENTS:
#   a0: leg1
#   a1: leg2

# RETURNS: (𝑙𝑒𝑔12 +  𝑙𝑒𝑔22)

hypotenuse:
addi sp, sp, 4
sw ra, 0(sp)

call square

mv s0, a0
sw ra, 0(sp)
call square

add a0, a0, s0
sw ra, 0(sp)
call sqrt

lw ra, 0(sp)
addi sp, sp, -4
ret

square:
# IMPLEMENTATION OMITTED
ret

sqrt:
# IMPLEMENTATION OMITTED
ret

# hypotenuse
# ARGUMENTS:
#   a0: leg1
#   a1: leg2

# RETURNS: (𝑙𝑒𝑔12 +  𝑙𝑒𝑔22)

hypotenuse:

ret

square:
# IMPLEMENTATION OMITTED
ret

sqrt:
# IMPLEMENTATION OMITTED
ret

6.1904 Spring 2025 Q4 - 22 of 25 - Exam



This page intentionally left blank

6.1904 Spring 2025 Q4 - 23 of 25 - Exam



Problem 7. Pointer Detective (12 points)

Consider the code below:

#include<stdio.h>
#include<stdint.h>
#include<string.h>

int main(void){
uint32_t a = 19;
uint16_t b = 17;
uint8_t c = 38;

uint32_t * p1;
uint16_t * p2;
uint8_t * p3;

p1 = &b;
p2 = &c;
p3 = &a;

// note: %08x formats for 8 digits of hexadecimal padded with leading 0s

printf(" p1: %08x\n", (int)(p1));
printf(" p2: %08x\n", (int)(p2));
printf(" p3: %08x\n", (int)(p3));
printf("*p1: %08x\n", (int)*p1);
printf("*p2: %04x\n", (int)*p2);
printf("*p3: %02x\n", (int)*p3);

p1 = p1+1;
p2 = p2+1;
p3 = p3-2;

printf(" p1: %08x\n", (int)(p1));
printf(" p2: %08x\n", (int)(p2));
printf(" p3: %08x\n", (int)(p3));
printf("*p1: %08x\n", (int)*p1);
printf("*p2: %04x\n", (int)*p2);
printf("*p3: %02x\n", (int)*p3);

}

6.1904 Spring 2025 Q4 - 24 of 25 - Exam



When run, the following incomplete printout is generated:

p1: 6ce0b3fa
p2: 6ce0b3f9
p3: 6ce0b3fc
*p1: 00130011
*p2: 1126
*p3: 13
p1: __BLANK1__
p2: __BLANK2__
p3: __BLANK3__
*p1: __BLANK4__
*p2: __BLANK5__
*p3: __BLANK6__

What is printed in the six blanks? If not enough information is available, write “CAN’T TELL”.

__BLANK1__:

__BLANK2__:

__BLANK3__:

__BLANK4__:

__BLANK5__:

__BLANK6__:

6.1904 Spring 2025 Q4 - 25 of 25 - Exam


