MIT 6.190 RISC-V ISA Reference Card

MIT 6.190 ISA Reference Card: Instructions

Instruction Syntax Description Execution
LUI lui rd, luiConstant Load Upper Immediate reglrd] <= luiConstant « 12
JAL jal rd, label Jump and Link reglrd] <= pc + 4

pc <= label
JALR jalr rd, offset(rs1) Jump and Link Register reglrd] <= pc + 4

pc <= {(reglrs1] + offset)[31:1], 1’b0}
BEQ beq rs1, rs2, label Branch if = pc <= (reglrsl1] == reglrs2]) ? label: pc + 4
BNE bne rs1, rs2, label Branch if # pc <= (reglrs1] != regl[rs2]) ? label: pc + 4
BLT blt rs1, rs2, label Branch if < (Signed) pc <= (reglrsl1] <s reglrs2]) ? label: pc + 4
BGE bge rs1, rs2, label Branch if > (Signed) pc <= (reglrsl1] >=5 reglrs2]) ? label: pc + 4
BLTU bltu rs1, rs2, label Branch if < (Unsigned) pc <= (reglrsl1] <, reglrs2]) ? label: pc + 4
BGEU bgeu rs1, rs2, label Branch if > (Unsigned) pc <= (reglrs1] >=, reglrs2]) ? label: pc + 4
LW 1w rd, offset(rs1) Load Word reglrd] <= mem[reg[rs1] + offset]
SW sw rs2, offset(rs1) Store Word mem[reglrs1] + offset] <= reg[rs2]
ADDI addi rd, rs1, constant Add Immediate reg[rd] <= reglrs1] + constant
SLTI slti rd, rsi1, constant Compare < Immediate (Signed) reglrd] <= (reglrs1] <5 constant) 2 1 : @
SLTIU sltiu rd, rs1, constant Compare < Immediate (Unsigned) reglrd] <= (reg[rs1] <, constant) 2 1 : @
XORI xori rd, rs1, constant Xor Immediate reglrd] <= reglrs1] " constant
ORI ori rd, rsl1, constant Or Immediate reglrd] <= reglrs1] | constant
ANDI andi rd, rsi1, constant And Immediate reglrd] <= reglrs1] & constant
SLLI slli rd, rsi1, shamt Shift Left Logical Immediate reglrd] <= reglrs1] « shamt
SRLI srli rd, rsi1, shamt Shift Right Logical Immediate reglrd] <= reglrs1] », shamt
SRAI srai rd, rs1, shamt Shift Right Arithmetic Immediate reglrd] <= reglrs1] »s shamt
ADD add rd, rs1, rs2 Add reglrd] <= reglrs1] + reg[rs2]
SUB sub rd, rsi, rs2 Subtract reglrd] <= reglrs1] - reglrs2]
SLL sll rd, rsi1, rs2 Shift Left Logical reglrd] <= reglrs1] « reglrs2]1[4:0]
SLT slt rd, rs1, rs2 Compare < (Signed) reglrd] <= (reglrs1] <s reglrs2]) 2 1 : @
SLTU sltu rd, rs1, rs2 Compare < (Unsigned) reglrd] <= (reglrs1] <, reg[rs2]) 21 : @
XOR xor rd, rs1, rs2 Xor reglrd] <= reglrs1] " reglrs2]
SRL srl rd, rsi1, rs2 Shift Right Logical reglrd] <= reglrs1] », reglrs2][4:0]
SRA sra rd, rsl, rs2 Shift Right Arithmetic reglrd] <= reglrs1] »s reglrs2][4:0]
OR or rd, rs1, rs2 Or reglrd] <= reglrs1] | reglrs2]
AND and rd, rsi1, rs2 And reglrd] <= reglrs1] & regl[rs2]

Note: luiConstant is a 20-bit value. offset and constant are signed 12-bit values that are sign-extended to 32-bit values. label

is a 32-bit memory address or its alias name. shamt is a 5-bit unsigned shift amount.

MIT 6.190 ISA Reference Card: Pseudoinstructions

Pseudoinstruction Description Execution
1i rd, liConstant Load Immediate reglrd] <= liConstant
mv rd, rsi Move reglrd] <= reglrs1] + @
not rd, rsi Logical Not reglrd] <= reglrs1] " -1
neg rd, rsi Arithmetic Negation reglrd] <= @ - reglrsi1]
j label Jump pc <= label
jal label Jump and Link (with ra) reglral <= pc + 4
call label pc <= label
jr rsi Jump Register pc <= reglrs1] & ~1
jalr rsi Jump and Link Register (with ra) reglral <= pc + 4

pc <= reglrs1] & ~1

ret Return from Subroutine pc <= regl[ral
bgt rs1, rs2, label Branch > (Signed) pc <= (reglrs1] >5 reg[rs2]) ? label : pc + 4
ble rs1, rs2, label Branch < (Signed) pc <= (reglrs1] <=5 reglrs2]) ? label : pc + 4
bgtu rs1, rs2, label Branch > (Unsigned) pc <= (reglrs1] >s reglrs2]) ? label : pc + 4
bleu rs1, rs2, label Branch < (Unsigned) pc <= (reglrs1] <=4 reglrs2]) ? label : pc + 4
beqz rs1, label Branch =0 pc <= (reg[rs1] == @) ? label : pc + 4
bnez rsi1, label Branch # 0 pc <= (reglrs1] != @) ? label : pc + 4
bltz rs1, label Branch < 0 (Signed) pc <= (reglrs1] <s 0) ? label : pc + 4
bgez rs1, label Branch > 0 (Signed) pc <= (reglrs1] >=5 @) ? label : pc + 4
bgtz rs1, label Branch > 0 (Signed) pc <= (reglrs1] >5s @) ? label : pc + 4
blez rs1, label Branch < 0 (Signed) pc <= (reglrs1] <=5 @) ? label : pc + 4

Note: liConstant is a 32-bit value.

MIT 6.190 RISC-V ISA Reference Card

MIT 6.190 ISA Reference Card: Calling Convention

Registers ~ Symbolic names Description Saver
X0 zero Hardwired zero —
x1 ra Return address Caller
X2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 t0-t2 Temporary registers Caller
x8-x9 s0-s1 Saved registers Callee
x10-x11 a0-al Function arguments and return values Caller
x12-x17 a2-a7 Function arguments Caller
x18-x27 s2-s11 Saved registers Callee
x28-x31 t3-t6 Temporary registers Caller
MIT 6.190 ISA Reference Card: Instruction Encodings
31 25 24 20 19 15 14 12 11 7 0
funct? [rs2 rsl funct3 rd opcode R-type
imm|[11:0] rsl funct3 rd opcode I-type
imm|[11:5] rs2 rsl funct3 imm|[4:0] opcode S-type
imm|[12]10:5] rs2 rsl funct3 | imm|4:1]11] opcode B-type
imm|[31:12] rd opcode U-type
imm|[20]10:1]11]19:12] rd opcode J-type
RV 32I Base Instruction Set (MIT 6.190 subset)
imm|[31:12] rd 0110111 LUI
imm|[20[10:1]11]19:12] rd 1101111 JAL
imm|[11:0] rsl 000 rd 1100111 JALR
imm|[12]10:5] rs2 rsl 000 imm|[4:1[11] 1100011 BEQ
imm|12[10:5 rs2 rsl 001 imm|4:1]11 1100011 BNE
imm|[12]10:5 rs2 rsl 100 imm|4:1]11 1100011 BLT
imm|[12]10:5] rs2 rsl 101 imm|[4:1[11] 1100011 BGE
imm|12[10:5 rs2 rsl 110 imm|4:1]11 1100011 BLTU
imm[12[10:5 rs2 rsl 111 imm|4:1]11 1100011 BGEU
imm|[11:0] rsl 010 rd 0000011 LW
imm|[11:5] [rs2 rsl 010 imm|[4:0] 0100011 SW
imm][11:0] rsl 000 rd 0010011 ADDI
imm|[11:0] rsl 010 rd 0010011 SLTI
imm|11:0 rsl 011 rd 0010011 SLTTU
imm|11:0 rsl 100 rd 0010011 XORI
imm|[11:0] rsl 110 rd 0010011 ORI
imm|[11:0] rsl 111 rd 0010011 ANDI
0000000 shamt rsl 001 rd 0010011 SLLI
0000000 shamt rsl 101 rd 0010011 SRLI
0100000 shamt rsl 101 rd 0010011 SRAI
0000000 rs2 rsl 000 rd 0110011 ADD
0100000 rs2 rsl 000 rd 0110011 SUB
0000000 rs2 rsl 001 rd 0110011 SLL
0000000 rs2 rsl 010 rd 0110011 SLT
0000000 rs2 rsl 011 rd 0110011 SLTU
0000000 rs2 rsl 100 rd 0110011 XOR
0000000 rs2 rsl 101 rd 0110011 SRL
0100000 rs2 rsl 101 rd 0110011 SRA
0000000 rs2 rsl 110 rd 0110011 OR
0000000 rs2 rsl 111 rd 0110011 AND

e For JAL and branch instructions (BEQ, BNE, BLT, BGE, BLTU, BGEU), the immediate encodes the target
address as an offset from the current pc (i.e., pc + imm = label).

e Not all immediate bits are encoded. Missing lower bits are filled with zeros and missing upper bits are sign-
extended.

